MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020]

Related tags

Data AnalysisMead
Overview

MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020]

by Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang, Wayne Wu, Chen Qian, Ran He, Yu Qiao, Chen Change Loy.

Introduction

This repository is for our ECCV2020 paper MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation.

Multi-view Emotional Audio-visual Dataset

To cope with the challenge of realistic and natural emotional talking face genertaion, we build the Multi-view Emotional Audio-visual Dataset (MEAD) which is a talking-face video corpus featuring 60 actors and actresses talking with 8 different emotions at 3 different intensity levels. High-quality audio-visual clips are captured at 7 different view angles in a strictly-controlled environment. Together with the dataset, we also release an emotional talking-face generation baseline which enables the manipulation of both emotion and its intensity. For more specific information about the dataset, please refer to here.

image

Installation

This repository is based on Pytorch, so please follow the official instructions in here. The code is tested under pytorch1.0 and Python 3.6 on Ubuntu 16.04.

Usage

Training set & Testing set Split

Please refer to the Section 6 "Speech Corpus of Mead" in the supplementary material. The speech corpora are basically divided into 3 parts, (i.e., common, generic, and emotion-related). For each intensity level, we directly use the last 10 sentences of neutral category and the last 6 sentences of the other seven emotion categories as the testing set. Note that all the sentences in the testing set come from the "emotion-related" part. Meanwhile if you are trying to manipulate the emotion category, you can use all the 40 sentences of neutral category as the input samples.

Training

  1. Download the dataset from here. We package the audio-visual data of each actor in a single folder named after "MXXX" or "WXXX", where "M" and "W" indicate actor and actress, respectively.
  2. As Mead requires different modules to achieve different functions, thus we seperate the training for Mead into three stages. In each stage, the corresponding configuration (.yaml file) should be set up accordingly, and used as below:

Stage 1: Audio-to-Landmarks Module

cd Audio2Landmark
python train.py --config config.yaml

Stage 2: Neutral-to-Emotion Transformer

cd Neutral2Emotion
python train.py --config config.yaml

Stage 3: Refinement Network

cd Refinement
python train.py --config config.yaml

Testing

  1. First, download the pretrained models and put them in models folder.
  2. Second, download the demo audio data.
  3. Run the following command to generate a talking sequence with a specific emotion
cd Refinement
python demo.py --config config_demo.yaml

You can try different emotions by replacing the number with other integers from 0~7.

  • 0:angry
  • 1:disgust
  • 2:contempt
  • 3:fear
  • 4:happy
  • 5:sad
  • 6:surprised
  • 7:neutral

In addition, you can also try compound emotion by setting up two different emotions at the same time.

image

  1. The results are stored in outputs folder.

Citation

If you find this code useful for your research, please cite our paper:

@inproceedings{kaisiyuan2020mead,
 author = {Wang, Kaisiyuan and Wu, Qianyi and Song, Linsen and Yang, Zhuoqian and Wu, Wayne and Qian, Chen and He, Ran and Qiao, Yu and Loy, Chen Change},
 title = {MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation},
 booktitle = {ECCV},
 month = Augest,
 year = {2020}
} 
A stock analysis app with streamlit

StockAnalysisApp A stock analysis app with streamlit. You select the ticker of the stock and the app makes a series of analysis by using the price cha

Antonio Catalano 50 Nov 27, 2022
A 2-dimensional physics engine written in Cairo

A 2-dimensional physics engine written in Cairo

Topology 38 Nov 16, 2022
Data collection, enhancement, and metrics calculation.

l3_data_collection Data collection, enhancement, and metrics calculation. Summary Repository containing code for QuantDAO's JDT data collection task.

Ruiwyn 3 Dec 23, 2022
This python script allows you to manipulate the audience data from Sl.ido surveys

Slido-Automated-VoteBot This python script allows you to manipulate the audience data from Sl.ido surveys Since Slido blocks interference from automat

Pranav Menon 1 Jan 24, 2022
Approximate Nearest Neighbor Search for Sparse Data in Python!

Approximate Nearest Neighbor Search for Sparse Data in Python! This library is well suited to finding nearest neighbors in sparse, high dimensional spaces (like text documents).

Meta Research 906 Jan 01, 2023
A Python module for clustering creators of social media content into networks

sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks

72 Dec 30, 2022
signac-flow - manage workflows with signac

signac-flow - manage workflows with signac The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, a

Glotzer Group 44 Oct 14, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Randomisation-based inference in Python based on data resampling and permutation.

Randomisation-based inference in Python based on data resampling and permutation.

67 Dec 27, 2022
Projects that implement various aspects of Data Engineering.

DATAWAREHOUSE ON AWS The purpose of this project is to build a datawarehouse to accomodate data of active user activity for music streaming applicatio

2 Oct 14, 2021
My solution to the book A Collection of Data Science Take-Home Challenges

DS-Take-Home Solution to the book "A Collection of Data Science Take-Home Challenges". Note: Please don't contact me for the dataset. This repository

Jifu Zhao 1.5k Jan 03, 2023
Monitor the stability of a pandas or spark dataframe ⚙︎

Population Shift Monitoring popmon is a package that allows one to check the stability of a dataset. popmon works with both pandas and spark datasets.

ING Bank 403 Dec 07, 2022
HyperSpy is an open source Python library for the interactive analysis of multidimensional datasets

HyperSpy is an open source Python library for the interactive analysis of multidimensional datasets that can be described as multidimensional arrays o

HyperSpy 411 Dec 27, 2022
Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data

WeRateDogs Twitter Data from 2015 to 2017 Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data Table of Contents Introduction Proj

Keenan Cooper 1 Jan 12, 2022
Hg002-qc-snakemake - HG002 QC Snakemake

HG002 QC Snakemake To Run Resources and data specified within snakefile (hg002QC

Juniper A. Lake 2 Feb 16, 2022
Statistical Rethinking course winter 2022

Statistical Rethinking (2022 Edition) Instructor: Richard McElreath Lectures: Uploaded Playlist and pre-recorded, two per week Discussion: Online, F

Richard McElreath 3.9k Dec 31, 2022
Uses MIT/MEDSL, New York Times, and US Census datasources to analyze per-county COVID-19 deaths.

Covid County Executive summary Setup Install miniconda, then in the command line, run conda create -n covid-county conda activate covid-county conda i

Ahmed Fasih 1 Dec 22, 2021
Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment

Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment Brief explanation of PT Bukalapak.com Tbk Bukalapak was found

Najibulloh Asror 2 Feb 10, 2022
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Theano

PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an

PyMC 7.2k Dec 30, 2022
Pypeln is a simple yet powerful Python library for creating concurrent data pipelines.

Pypeln Pypeln (pronounced as "pypeline") is a simple yet powerful Python library for creating concurrent data pipelines. Main Features Simple: Pypeln

Cristian Garcia 1.4k Dec 31, 2022