《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

Overview

Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020. alt text

Abstract

Cross-view geo-localization is the problem of estimating the position and orientation (latitude, longitude and azimuth angle) of a camera at ground level given a large-scale database of geo-tagged aerial (\eg, satellite) images. Existing approaches treat the task as a pure location estimation problem by learning discriminative feature descriptors, but neglect orientation alignment. It is well-recognized that knowing the orientation between ground and aerial images can significantly reduce matching ambiguity between these two views, especially when the ground-level images have a limited Field of View (FoV) instead of a full field-of-view panorama. Therefore, we design a Dynamic Similarity Matching network to estimate cross-view orientation alignment during localization. In particular, we address the cross-view domain gap by applying a polar transform to the aerial images to approximately align the images up to an unknown azimuth angle. Then, a two-stream convolutional network is used to learn deep features from the ground and polar-transformed aerial images. Finally, we obtain the orientation by computing the correlation between cross-view features, which also provides a more accurate measure of feature similarity, improving location recall. Experiments on standard datasets demonstrate that our method significantly improves state-of-the-art performance. Remarkably, we improve the top-1 location recall rate on the CVUSA dataset by a factor of $1.5\times$ for panoramas with known orientation, by a factor of $3.3\times$ for panoramas with unknown orientation, and by a factor of $6\times$ for $180^{\circ}$-FoV images with unknown orientation.

Experiment Dataset

We use two existing dataset to do the experiments

  • CVUSA dataset: a dataset in America, with pairs of ground-level images and satellite images. All ground-level images are panoramic images.
    The dataset can be accessed from https://github.com/viibridges/crossnet

  • CVACT dataset: a dataset in Australia, with pairs of ground-level images and satellite images. All ground-level images are panoramic images.
    The dataset can be accessed from https://github.com/Liumouliu/OriCNN

Dataset Preparation: Polar transform

  1. Please Download the two datasets from above links, and then put them under the director "Data/". The structure of the director "Data/" should be: "Data/CVUSA/ Data/ANU_data_small/"
  2. Please run "data_preparation.py" to get polar transformed aerial images of the two datasets and pre-crop-and-resize the street-view images in CVACT dataset to accelerate the training speed.

Codes

Codes for training and testing on unknown orientation (train_grd_noise=360) and different FoV.

  1. Training: CVUSA: python train_cvusa_fov.py --polar 1 --train_grd_noise 360 --train_grd_FOV $YOUR_FOV --test_grd_FOV $YOUR_FOV CVACT: python train_cvact_fov.py --polar 1 --train_grd_noise 360 --train_grd_FOV $YOUR_FOV --test_grd_FOV $YOUR_FOV

  2. Evaluation: CVUSA: python test_cvusa_fov.py --polar 1 --train_grd_noise 360 --train_grd_FOV $YOUR_FOV --test_grd_FOV $YOUR_FOV CVACT: python test_cvact_fov.py --polar 1 --train_grd_noise 360 --train_grd_FOV $YOUR_FOV --test_grd_FOV $YOUR_FOV

Note that the test set construction operations are inside the data preparation script, polar_input_data_orien_FOV_3.py for CVUSA and ./OriNet_CVACT/input_data_act_polar_3.py for CVACT. We use "np.random.rand(2019)" in test_cvusa_fov.py and test_cvact_fov.py to make sure the constructed test set is the same one whenever they are used for performance evaluation for different models.

In case readers are interested to see the query images of newly constructed test sets where the ground images are with unkown orientation and small FoV, we provide the following two python scripts to save the images and their ground truth orientations at the local disk:

  • CVUSA datset: python generate_test_data_cvusa.py

  • CVACT dataset: python generate_test_data_cvact.py

Readers are encouraged to visit "https://github.com/Liumouliu/OriCNN" to access codes for evaluation on the fine-grained geo-localization CVACT_test set.

Models:

Our trained models for CVUSA and CVACT are available in here.

There is also an "Initialize" model for your own training step. The VGG16 part in the "Initialize" model is initialised by the online model and other parts are initialised randomly.

Please put them under the director of "Model/" and then you can use them for training or evaluation.

Publications

This work is published in CVPR 2020.
[Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching]

If you are interested in our work and use our code, we are pleased that you can cite the following publication:
Yujiao Shi, Xin Yu, Dylan Campbell, Hongdong Li. Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching.

@inproceedings{shi2020where, title={Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching}, author={Shi, Yujiao and Yu, Xin and Campbell, Dylan and Li, Hongdong}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, year={2020} }

Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
Pytorch implementation of Cut-Thumbnail in the paper Cut-Thumbnail:A Novel Data Augmentation for Convolutional Neural Network.

Cut-Thumbnail (Accepted at ACM MULTIMEDIA 2021) Tianshu Xie, Xuan Cheng, Xiaomin Wang, Minghui Liu, Jiali Deng, Tao Zhou, Ming Liu This is the officia

3 Apr 12, 2022
Exploration of some patients clinical variables.

Answer_ALS_clinical_data Exploration of some patients clinical variables. All the clinical / metadata data is available here: https://data.answerals.o

1 Jan 20, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Sample code from the Neural Networks from Scratch book.

Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.

Harrison 172 Dec 31, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
Code for our paper "Interactive Analysis of CNN Robustness"

Perturber Code for our paper "Interactive Analysis of CNN Robustness" Datasets Feature visualizations: Google Drive Fine-tuning checkpoints as saved m

Stefan Sietzen 0 Aug 17, 2021
Pretraining Representations For Data-Efficient Reinforcement Learning

Pretraining Representations For Data-Efficient Reinforcement Learning Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Ch

Mila 40 Dec 11, 2022
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
Apollo optimizer in tensorflow

Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea

Evan Walters 1 Nov 09, 2021
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022