《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

Overview

Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020. alt text

Abstract

Cross-view geo-localization is the problem of estimating the position and orientation (latitude, longitude and azimuth angle) of a camera at ground level given a large-scale database of geo-tagged aerial (\eg, satellite) images. Existing approaches treat the task as a pure location estimation problem by learning discriminative feature descriptors, but neglect orientation alignment. It is well-recognized that knowing the orientation between ground and aerial images can significantly reduce matching ambiguity between these two views, especially when the ground-level images have a limited Field of View (FoV) instead of a full field-of-view panorama. Therefore, we design a Dynamic Similarity Matching network to estimate cross-view orientation alignment during localization. In particular, we address the cross-view domain gap by applying a polar transform to the aerial images to approximately align the images up to an unknown azimuth angle. Then, a two-stream convolutional network is used to learn deep features from the ground and polar-transformed aerial images. Finally, we obtain the orientation by computing the correlation between cross-view features, which also provides a more accurate measure of feature similarity, improving location recall. Experiments on standard datasets demonstrate that our method significantly improves state-of-the-art performance. Remarkably, we improve the top-1 location recall rate on the CVUSA dataset by a factor of $1.5\times$ for panoramas with known orientation, by a factor of $3.3\times$ for panoramas with unknown orientation, and by a factor of $6\times$ for $180^{\circ}$-FoV images with unknown orientation.

Experiment Dataset

We use two existing dataset to do the experiments

  • CVUSA dataset: a dataset in America, with pairs of ground-level images and satellite images. All ground-level images are panoramic images.
    The dataset can be accessed from https://github.com/viibridges/crossnet

  • CVACT dataset: a dataset in Australia, with pairs of ground-level images and satellite images. All ground-level images are panoramic images.
    The dataset can be accessed from https://github.com/Liumouliu/OriCNN

Dataset Preparation: Polar transform

  1. Please Download the two datasets from above links, and then put them under the director "Data/". The structure of the director "Data/" should be: "Data/CVUSA/ Data/ANU_data_small/"
  2. Please run "data_preparation.py" to get polar transformed aerial images of the two datasets and pre-crop-and-resize the street-view images in CVACT dataset to accelerate the training speed.

Codes

Codes for training and testing on unknown orientation (train_grd_noise=360) and different FoV.

  1. Training: CVUSA: python train_cvusa_fov.py --polar 1 --train_grd_noise 360 --train_grd_FOV $YOUR_FOV --test_grd_FOV $YOUR_FOV CVACT: python train_cvact_fov.py --polar 1 --train_grd_noise 360 --train_grd_FOV $YOUR_FOV --test_grd_FOV $YOUR_FOV

  2. Evaluation: CVUSA: python test_cvusa_fov.py --polar 1 --train_grd_noise 360 --train_grd_FOV $YOUR_FOV --test_grd_FOV $YOUR_FOV CVACT: python test_cvact_fov.py --polar 1 --train_grd_noise 360 --train_grd_FOV $YOUR_FOV --test_grd_FOV $YOUR_FOV

Note that the test set construction operations are inside the data preparation script, polar_input_data_orien_FOV_3.py for CVUSA and ./OriNet_CVACT/input_data_act_polar_3.py for CVACT. We use "np.random.rand(2019)" in test_cvusa_fov.py and test_cvact_fov.py to make sure the constructed test set is the same one whenever they are used for performance evaluation for different models.

In case readers are interested to see the query images of newly constructed test sets where the ground images are with unkown orientation and small FoV, we provide the following two python scripts to save the images and their ground truth orientations at the local disk:

  • CVUSA datset: python generate_test_data_cvusa.py

  • CVACT dataset: python generate_test_data_cvact.py

Readers are encouraged to visit "https://github.com/Liumouliu/OriCNN" to access codes for evaluation on the fine-grained geo-localization CVACT_test set.

Models:

Our trained models for CVUSA and CVACT are available in here.

There is also an "Initialize" model for your own training step. The VGG16 part in the "Initialize" model is initialised by the online model and other parts are initialised randomly.

Please put them under the director of "Model/" and then you can use them for training or evaluation.

Publications

This work is published in CVPR 2020.
[Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching]

If you are interested in our work and use our code, we are pleased that you can cite the following publication:
Yujiao Shi, Xin Yu, Dylan Campbell, Hongdong Li. Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching.

@inproceedings{shi2020where, title={Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching}, author={Shi, Yujiao and Yu, Xin and Campbell, Dylan and Li, Hongdong}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, year={2020} }

A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
TabNet for fastai

TabNet for fastai This is an adaptation of TabNet (Attention-based network for tabular data) for fastai (=2.0) library. The original paper https://ar

Mikhail Grankin 116 Oct 21, 2022
Official Implementation of Few-shot Visual Relationship Co-localization

VRC Official implementation of the Few-shot Visual Relationship Co-localization (ICCV 2021) paper project page | paper Requirements Use python = 3.8.

22 Oct 13, 2022
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

On Sampling Collaborative Filtering Datasets This repository contains the implementation of many popular sampling strategies, along with various expli

Noveen Sachdeva 17 Dec 08, 2022
Contains code for Deep Kernelized Dense Geometric Matching

DKM - Deep Kernelized Dense Geometric Matching Contains code for Deep Kernelized Dense Geometric Matching We provide pretrained models and code for ev

Johan Edstedt 83 Dec 23, 2022
Model Zoo of BDD100K Dataset

Model Zoo of BDD100K Dataset

ETH VIS Group 200 Dec 27, 2022
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"

dffm The goal of dffm is to provide functionality to apply the methods developed in the paper “Dynamic Factor Model for Functional Time Series: Identi

Sven Otto 3 Dec 09, 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
ReAct: Out-of-distribution Detection With Rectified Activations

ReAct: Out-of-distribution Detection With Rectified Activations This is the source code for paper ReAct: Out-of-distribution Detection With Rectified

38 Dec 05, 2022
LyaNet: A Lyapunov Framework for Training Neural ODEs

LyaNet: A Lyapunov Framework for Training Neural ODEs Provide the model type--config-name to train and test models configured as those shown in the pa

Ivan Dario Jimenez Rodriguez 21 Nov 21, 2022
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023