Lipschitz-constrained Unsupervised Skill Discovery

Related tags

Deep LearningLSD
Overview

Lipschitz-constrained Unsupervised Skill Discovery

This repository is the official implementation of

The implementation is based on Unsupervised Skill Discovery with Bottleneck Option Learning and garage.

Visit our project page for more results including videos.

Requirements

Examples

Install requirements:

pip install -r requirements.txt
pip install -e .
pip install -e garaged

Ant with 2-D continuous skills:

python tests/main.py --run_group EXP --env ant --max_path_length 200 --dim_option 2 --common_lr 0.0001 --seed 0 --normalizer_type ant_preset --use_gpu 1 --traj_batch_size 20 --n_parallel 8 --n_epochs_per_eval 5000 --n_thread 1 --model_master_dim 1024 --record_metric_difference 0 --n_epochs_per_tb 100 --n_epochs_per_save 50000 --n_epochs_per_pt_save 5000 --n_epochs_per_pkl_update 1000 --eval_record_video 1 --n_epochs 200001 --spectral_normalization 1 --n_epochs_per_log 50 --discrete 0 --num_random_trajectories 200 --sac_discount 0.99 --alpha 0.01 --sac_lr_a -1 --lr_te 3e-05 --sac_scale_reward 0 --max_optimization_epochs 1 --trans_minibatch_size 2048 --trans_optimization_epochs 4 --eval_plot_axis -50 50 -50 50

Ant with 16 discrete skills:

python tests/main.py --run_group EXP --env ant --max_path_length 200 --dim_option 16 --common_lr 0.0001 --seed 0 --normalizer_type ant_preset --use_gpu 1 --traj_batch_size 20 --n_parallel 8 --n_epochs_per_eval 5000 --n_thread 1 --model_master_dim 1024 --record_metric_difference 0 --n_epochs_per_tb 100 --n_epochs_per_save 50000 --n_epochs_per_pt_save 5000 --n_epochs_per_pkl_update 1000 --eval_record_video 1 --n_epochs 200001 --spectral_normalization 1 --n_epochs_per_log 50 --discrete 1 --num_random_trajectories 200 --sac_discount 0.99 --alpha 0.003 --sac_lr_a -1 --lr_te 3e-05 --sac_scale_reward 0 --max_optimization_epochs 1 --trans_minibatch_size 2048 --trans_optimization_epochs 4 --eval_plot_axis -50 50 -50 50

Humanoid with 2-D continuous skills:

python tests/main.py --run_group EXP --env humanoid --max_path_length 1000 --dim_option 2 --common_lr 0.0003 --seed 0 --normalizer_type humanoid_preset --use_gpu 1 --traj_batch_size 5 --n_parallel 8 --n_epochs_per_eval 5000 --n_thread 1 --model_master_dim 1024 --record_metric_difference 0 --n_epochs_per_tb 100 --n_epochs_per_save 50000 --n_epochs_per_pt_save 5000 --n_epochs_per_pkl_update 1000 --eval_record_video 1 --n_epochs 200001 --spectral_normalization 1 --n_epochs_per_log 50 --discrete 0 --video_skip_frames 3 --num_random_trajectories 200 --sac_discount 0.99 --alpha 0.03 --sac_lr_a -1 --lr_te 0.0001 --lsd_alive_reward 0.03 --sac_scale_reward 0 --max_optimization_epochs 1 --trans_minibatch_size 2048 --trans_optimization_epochs 4 --sac_replay_buffer 1 --te_max_optimization_epochs 1 --te_trans_optimization_epochs 2

Humanoid with 16 discrete skills:

python tests/main.py --run_group EXP --env humanoid --max_path_length 1000 --dim_option 16 --common_lr 0.0003 --seed 0 --normalizer_type humanoid_preset --use_gpu 1 --traj_batch_size 5 --n_parallel 8 --n_epochs_per_eval 5000 --n_thread 1 --model_master_dim 1024 --record_metric_difference 0 --n_epochs_per_tb 100 --n_epochs_per_save 50000 --n_epochs_per_pt_save 5000 --n_epochs_per_pkl_update 1000 --eval_record_video 1 --n_epochs 200001 --spectral_normalization 1 --n_epochs_per_log 50 --discrete 1 --video_skip_frames 3 --num_random_trajectories 200 --sac_discount 0.99 --alpha 0.03 --sac_lr_a -1 --lr_te 0.0001 --lsd_alive_reward 0.03 --sac_scale_reward 0 --max_optimization_epochs 1 --trans_minibatch_size 2048 --trans_optimization_epochs 4 --sac_replay_buffer 1 --te_max_optimization_epochs 1 --te_trans_optimization_epochs 2

HalfCheetah with 8 discrete skills:

python tests/main.py --run_group EXP --env half_cheetah --max_path_length 200 --dim_option 8 --common_lr 0.0001 --seed 0 --normalizer_type half_cheetah_preset --use_gpu 1 --traj_batch_size 20 --n_parallel 8 --n_epochs_per_eval 5000 --n_thread 1 --model_master_dim 1024 --record_metric_difference 0 --n_epochs_per_tb 100 --n_epochs_per_save 50000 --n_epochs_per_pt_save 5000 --n_epochs_per_pkl_update 1000 --eval_record_video 1 --n_epochs 200001 --spectral_normalization 1 --n_epochs_per_log 50 --discrete 1 --num_random_trajectories 200 --sac_discount 0.99 --alpha 0.01 --sac_lr_a -1 --lr_te 3e-05 --sac_scale_reward 0 --max_optimization_epochs 1 --trans_minibatch_size 2048 --trans_optimization_epochs 4
Owner
Seohong Park
Seohong Park
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2

DreamerPro Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFl

22 Nov 01, 2022
Data and code from COVID-19 machine learning paper

Machine learning approaches for localized lockdown, subnotification analysis and cases forecasting in São Paulo state counties during COVID-19 pandemi

Sara Malvar 4 Dec 22, 2022
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models arXiv | BibTeX High-Resolution Image Synthesis with Latent Diffusion Models Robin Rombach*, Andreas Blattmann*, Dominik Lorenz

CompVis Heidelberg 5.6k Dec 30, 2022
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
Jarvis Project is a basic virtual assistant that uses TensorFlow for learning.

Jarvis_proyect Jarvis Project is a basic virtual assistant that uses TensorFlow for learning. Latest version 0.1 Features: Good morning protocol Tell

Anze Kovac 3 Aug 31, 2022
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021
Parsing, analyzing, and comparing source code across many languages

Semantic semantic is a Haskell library and command line tool for parsing, analyzing, and comparing source code. In a hurry? Check out our documentatio

GitHub 8.6k Dec 28, 2022
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et

Sean M. Hendryx 1 Jan 27, 2022
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 04, 2023
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis

ImageBART NeurIPS 2021 Patrick Esser*, Robin Rombach*, Andreas Blattmann*, Björn Ommer * equal contribution arXiv | BibTeX | Poster Requirements A sui

CompVis Heidelberg 110 Jan 01, 2023