Implements the training, testing and editing tools for "Pluralistic Image Completion"

Overview

Pluralistic Image Completion

ArXiv | Project Page | Online Demo | Video(demo)

This repository implements the training, testing and editing tools for "Pluralistic Image Completion" by Chuanxia Zheng, Tat-Jen Cham and Jianfei Cai at NTU. Given one masked image, the proposed Pluralistic model is able to generate multiple and diverse plausible results with various structure, color and texture.

Editing example

Example results

Example completion results of our method on images of face (CelebA), building (Paris), and natural scenes (Places2) with center masks (masks shown in gray). For each group, the masked input image is shown left, followed by sampled results from our model without any post-processing. The results are diverse and plusible.

More results on project page

Getting started

Installation

This code was tested with Pytoch 0.4.0, CUDA 9.0, Python 3.6 and Ubuntu 16.04

pip install visdom dominate
  • Clone this repo:
git clone https://github.com/lyndonzheng/Pluralistic
cd Pluralistic

Datasets

  • face dataset: 24183 training images and 2824 test images from CelebA and use the algorithm of Growing GANs to get the high-resolution CelebA-HQ dataset
  • building dataset: 14900 training images and 100 test images from Paris
  • natural scenery: original training and val images from Places2
  • object original training images from ImageNet.

Training

  • Train a model (default: random irregular and irregular holes):
python train.py --name celeba_random --img_file your_image_path
  • Set --mask_type in options/base_options.py for different training masks. --mask_file path is needed for external irregular mask, such as the irregular mask dataset provided by Liu et al. and Karim lskakov .
  • To view training results and loss plots, run python -m visdom.server and copy the URL http://localhost:8097.
  • Training models will be saved under the checkpoints folder.
  • The more training options can be found in options folder.

Testing

  • Test the model
python test.py  --name celeba_random --img_file your_image_path
  • Set --mask_type in options/base_options.py to test various masks. --mask_file path is needed for 3. external irregular mask,
  • The default results will be saved under the results folder. Set --results_dir for a new path to save the result.

Pretrained Models

Download the pre-trained models using the following links and put them undercheckpoints/ directory.

Our main novelty of this project is the multiple and diverse plausible results for one given masked image. The center_mask models are trained with images of resolution 256*256 with center holes 128x128, which have large diversity for the large missing information. The random_mask models are trained with random regular and irregular holes, which have different diversity for different mask sizes and image backgrounds.

GUI

Download the pre-trained models from Google drive and put them undercheckpoints/ directory.

  • Install the PyQt5 for GUI operation
pip install PyQt5

Basic usage is:

python -m visdom.server
python ui_main.py

The buttons in GUI:

  • Options: Select the model and corresponding dataset for editing.
  • Bush Width: Modify the width of bush for free_form mask.
  • draw/clear: Draw a free_form or rectangle mask for random_model. Clear all mask region for a new input.
  • load: Choose the image from the directory.
  • random: Random load the editing image from the datasets.
  • fill: Fill the holes ranges and show it on the right.
  • save: Save the inputs and outputs to the directory.
  • Original/Output: Switch to show the original or output image.

The steps are as follows:

1. Select a model from 'options'
2. Click the 'random' or 'load' button to get an input image.
3. If you choose a random model, click the 'draw/clear' button to input free_form mask.
4. If you choose a center model, the center mask has been given.
5. click 'fill' button to get multiple results.
6. click 'save' button to save the results.

Editing Example Results

  • Results (original, input, output) for object removing
  • Results (input, output) for face playing. When mask half or right face, the diversity will be small for the short+long term attention layer will copy information from other side. When mask top or down face, the diversity will be large.

Next

  • Free form mask for various Datasets
  • Higher resolution image completion

License


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This software is for educational and academic research purpose only. If you wish to obtain a commercial royalty bearing license to this software, please contact us at [email protected].

Citation

If you use this code for your research, please cite our paper.

@inproceedings{zheng2019pluralistic,
  title={Pluralistic Image Completion},
  author={Zheng, Chuanxia and Cham, Tat-Jen and Cai, Jianfei},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={1438--1447},
  year={2019}
}

@article{zheng2021pluralistic,
  title={Pluralistic Free-From Image Completion},
  author={Zheng, Chuanxia and Cham, Tat-Jen and Cai, Jianfei},
  journal={International Journal of Computer Vision},
  pages={1--20},
  year={2021},
  publisher={Springer}
}
Owner
Chuanxia Zheng
Chuanxia Zheng
Code for Robust Contrastive Learning against Noisy Views

Robust Contrastive Learning against Noisy Views This repository provides a PyTorch implementation of the Robust InfoNCE loss proposed in paper Robust

Ching-Yao Chuang 53 Jan 08, 2023
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
This's an implementation of deepmind Visual Interaction Networks paper using pytorch

Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch

Mahmoud Gamal Salem 166 Dec 06, 2022
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022
PyTorch implementation of Neural Dual Contouring.

NDC PyTorch implementation of Neural Dual Contouring. Citation We are still writing the paper while adding more improvements and applications. If you

Zhiqin Chen 140 Dec 26, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

2.3k Jan 04, 2023
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
QI-Q RoboMaster2022 CV Algorithm

QI-Q RoboMaster2022 CV Algorithm

2 Jan 10, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
Explanatory Learning: Beyond Empiricism in Neural Networks

Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets

GLADIA Research Group 10 Dec 06, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
一个多模态内容理解算法框架,其中包含数据处理、预训练模型、常见模型以及模型加速等模块。

Overview 架构设计 插件介绍 安装使用 框架简介 方便使用,支持多模态,多任务的统一训练框架 能力列表: bert + 分类任务 自定义任务训练(插件注册) 框架设计 框架采用分层的思想组织模型训练流程。 DATA 层负责读取用户数据,根据 field 管理数据。 Parser 层负责转换原

Tencent 265 Dec 22, 2022
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022