Implements the training, testing and editing tools for "Pluralistic Image Completion"

Overview

Pluralistic Image Completion

ArXiv | Project Page | Online Demo | Video(demo)

This repository implements the training, testing and editing tools for "Pluralistic Image Completion" by Chuanxia Zheng, Tat-Jen Cham and Jianfei Cai at NTU. Given one masked image, the proposed Pluralistic model is able to generate multiple and diverse plausible results with various structure, color and texture.

Editing example

Example results

Example completion results of our method on images of face (CelebA), building (Paris), and natural scenes (Places2) with center masks (masks shown in gray). For each group, the masked input image is shown left, followed by sampled results from our model without any post-processing. The results are diverse and plusible.

More results on project page

Getting started

Installation

This code was tested with Pytoch 0.4.0, CUDA 9.0, Python 3.6 and Ubuntu 16.04

pip install visdom dominate
  • Clone this repo:
git clone https://github.com/lyndonzheng/Pluralistic
cd Pluralistic

Datasets

  • face dataset: 24183 training images and 2824 test images from CelebA and use the algorithm of Growing GANs to get the high-resolution CelebA-HQ dataset
  • building dataset: 14900 training images and 100 test images from Paris
  • natural scenery: original training and val images from Places2
  • object original training images from ImageNet.

Training

  • Train a model (default: random irregular and irregular holes):
python train.py --name celeba_random --img_file your_image_path
  • Set --mask_type in options/base_options.py for different training masks. --mask_file path is needed for external irregular mask, such as the irregular mask dataset provided by Liu et al. and Karim lskakov .
  • To view training results and loss plots, run python -m visdom.server and copy the URL http://localhost:8097.
  • Training models will be saved under the checkpoints folder.
  • The more training options can be found in options folder.

Testing

  • Test the model
python test.py  --name celeba_random --img_file your_image_path
  • Set --mask_type in options/base_options.py to test various masks. --mask_file path is needed for 3. external irregular mask,
  • The default results will be saved under the results folder. Set --results_dir for a new path to save the result.

Pretrained Models

Download the pre-trained models using the following links and put them undercheckpoints/ directory.

Our main novelty of this project is the multiple and diverse plausible results for one given masked image. The center_mask models are trained with images of resolution 256*256 with center holes 128x128, which have large diversity for the large missing information. The random_mask models are trained with random regular and irregular holes, which have different diversity for different mask sizes and image backgrounds.

GUI

Download the pre-trained models from Google drive and put them undercheckpoints/ directory.

  • Install the PyQt5 for GUI operation
pip install PyQt5

Basic usage is:

python -m visdom.server
python ui_main.py

The buttons in GUI:

  • Options: Select the model and corresponding dataset for editing.
  • Bush Width: Modify the width of bush for free_form mask.
  • draw/clear: Draw a free_form or rectangle mask for random_model. Clear all mask region for a new input.
  • load: Choose the image from the directory.
  • random: Random load the editing image from the datasets.
  • fill: Fill the holes ranges and show it on the right.
  • save: Save the inputs and outputs to the directory.
  • Original/Output: Switch to show the original or output image.

The steps are as follows:

1. Select a model from 'options'
2. Click the 'random' or 'load' button to get an input image.
3. If you choose a random model, click the 'draw/clear' button to input free_form mask.
4. If you choose a center model, the center mask has been given.
5. click 'fill' button to get multiple results.
6. click 'save' button to save the results.

Editing Example Results

  • Results (original, input, output) for object removing
  • Results (input, output) for face playing. When mask half or right face, the diversity will be small for the short+long term attention layer will copy information from other side. When mask top or down face, the diversity will be large.

Next

  • Free form mask for various Datasets
  • Higher resolution image completion

License


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This software is for educational and academic research purpose only. If you wish to obtain a commercial royalty bearing license to this software, please contact us at [email protected].

Citation

If you use this code for your research, please cite our paper.

@inproceedings{zheng2019pluralistic,
  title={Pluralistic Image Completion},
  author={Zheng, Chuanxia and Cham, Tat-Jen and Cai, Jianfei},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={1438--1447},
  year={2019}
}

@article{zheng2021pluralistic,
  title={Pluralistic Free-From Image Completion},
  author={Zheng, Chuanxia and Cham, Tat-Jen and Cai, Jianfei},
  journal={International Journal of Computer Vision},
  pages={1--20},
  year={2021},
  publisher={Springer}
}
Owner
Chuanxia Zheng
Chuanxia Zheng
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
UniLM AI - Large-scale Self-supervised Pre-training across Tasks, Languages, and Modalities

Pre-trained (foundation) models across tasks (understanding, generation and translation), languages (100+ languages), and modalities (language, image, audio, vision + language, audio + language, etc.

Microsoft 7.6k Jan 01, 2023
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 07, 2023
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu

machen 11 Nov 27, 2022
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

OpenDILab 205 Dec 29, 2022
Official Implementation for "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery" (ICCV 2021 Oral)

StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021 Oral) Run this model on Replicate Optimization: Global directions: Mapper: Check ou

3.3k Jan 05, 2023
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
A machine learning project which can detect and predict the skin disease through image recognition.

ML-Project-2021 A machine learning project which can detect and predict the skin disease through image recognition. The dataset used for this is the H

Debshishu Ghosh 1 Jan 13, 2022
Voice Conversion by CycleGAN (语音克隆/语音转换):CycleGAN-VC3

CycleGAN-VC3-PyTorch 中文说明 | English This code is a PyTorch implementation for paper: CycleGAN-VC3: Examining and Improving CycleGAN-VCs for Mel-spectr

Kun Ma 110 Dec 24, 2022
Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks

Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks - Official Project Page This repository contains the code develope

Amirsina Torfi 1.7k Dec 18, 2022
Toolchain to build Yoshi's Island from source code

Project-Y Toolchain to build Yoshi's Island (J) V1.0 from source code, by MrL314 Last updated: September 17, 2021 Setup To begin, download this toolch

MrL314 19 Apr 18, 2022
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023