Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

Related tags

Deep LearningLADDER
Overview

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces accepted at NeurIPS-2021.

  • Running the code

    • Setting up conda environment from https://github.com/cambridge-mlg/weighted-retraining because we use their pre-existing VAE models. See 'Install dependencies' section.

    • Download datasets by following the 'Set up Data' section in the above repository.

    • Relative imports are setup as if LADDER directory's code is in weighted-retraining/weighted_retraining/opt-scripts/.

    • To run LADDER for chemical design task: python ladder_chemical_design.py

    • To run LADDER for arithmetic expression optimization, some things need to be set up in above weighted-retraining environment

      • Add a comma in line 34 of weighted-retraining/weighted_retraining/train_scripts/train_expr.py
      • unzip eq2_grammar_dataset.zip in weighted-retraining/assets/data/expr
      • run python ladder_expression.py

This code builds upon the existing code provided by authors of Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining. We thank the authors for their code.

Please consider citing both the papers if you use this work:

  • Austin Tripp, Erik Daxberger, and Jos{'e} Miguel Hern{'a}ndez-Lobato. Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining, NeurIPS 2020.
  • Aryan Deshwal and Janardhan Rao Doppa. Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces, NeurIPS 2021.
Owner
PhD student in Machine Learning
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
Transfer Learning library for Deep Neural Networks.

Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon

Amazon 245 Dec 08, 2022
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
Title: Heart-Failure-Classification

This Notebook is based off an open source dataset available on where I have created models to classify patients who can potentially witness heart failure on the basis of various parameters. The best

Akarsh Singh 2 Sep 13, 2022
Official implementation of Densely connected normalizing flows

Densely connected normalizing flows This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster a

Matej Grcić 31 Dec 12, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
null

DeformingThings4D dataset Video | Paper DeformingThings4D is an synthetic dataset containing 1,972 animation sequences spanning 31 categories of human

208 Jan 03, 2023
[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning DouZero is a reinforcement learning framework for DouDizhu (斗地主), t

Kwai Inc. 3.1k Jan 04, 2023
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
Bottom-up Human Pose Estimation

Introduction This is the official code of Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation. This paper has been accepted to CVPR2

108 Dec 01, 2022
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.

Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica

Sophia Y. Chou 3 Feb 21, 2022
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021
Code for the Interspeech 2021 paper "AST: Audio Spectrogram Transformer".

AST: Audio Spectrogram Transformer Introduction Citing Getting Started ESC-50 Recipe Speechcommands Recipe AudioSet Recipe Pretrained Models Contact I

Yuan Gong 603 Jan 07, 2023