🏖 Easy training and deployment of seq2seq models.

Overview

Headliner

Build Status Build Status Docs codecov PyPI Version License

Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both researchers and developers. You can very easily deploy your models in a few lines of code. It was originally built for our own research to generate headlines from Welt news articles (see figure 1). That's why we chose the name, Headliner.

Figure 1: One example from our Welt.de headline generator.

Update 21.01.2020

The library now supports fine-tuning pre-trained BERT models with custom preprocessing as in Text Summarization with Pretrained Encoders!

check out this tutorial on colab!

🧠 Internals

We use sequence-to-sequence (seq2seq) under the hood, an encoder-decoder framework (see figure 2). We provide a very simple interface to train and deploy seq2seq models. Although this library was created internally to generate headlines, you can also use it for other tasks like machine translations, text summarization and many more.

Figure 2: Encoder-decoder sequence-to-sequence model.

Why Headliner?

You may ask why another seq2seq library? There are a couple of them out there already. For example, Facebook has fairseq, Google has seq2seq and there is also OpenNMT. Although those libraries are great, they have a few drawbacks for our use case e.g. the former doesn't focus much on production whereas the Google one is not actively maintained. OpenNMT was the closest one to match our requirements i.e. it has a strong focus on production. However, we didn't like that their workflow (preparing data, training and evaluation) is mainly done via the command line. They also expose a well-defined API though but the complexity there is still too high with too much custom code (see their minimal transformer training example).

Therefore, we built this library for us with the following goals in mind:

  • Easy-to-use API for training and deployment (only a few lines of code)
  • Uses TensorFlow 2.0 with all its new features (tf.function, tf.keras.layers etc.)
  • Modular classes: text preprocessing, modeling, evaluation
  • Extensible for different encoder-decoder models
  • Works on large text data

For more details on the library, read the documentation at: https://as-ideas.github.io/headliner/

Headliner is compatible with Python 3.6 and is distributed under the MIT license.

⚙️ Installation

⚠️ Before installing Headliner, you need to install TensorFlow as we use this as our deep learning framework. For more details on how to install it, have a look at the TensorFlow installation instructions.

Then you can install Headliner itself. There are two ways to install Headliner:

  • Install Headliner from PyPI (recommended):
pip install headliner
  • Install Headliner from the GitHub source:
git clone https://github.com/as-ideas/headliner.git
cd headliner
python setup.py install

📖 Usage

Training

For the training, you need to import one of our provided models or create your own custom one. Then you need to create the dataset, a tuple of input-output sequences, and then train it:

from headliner.trainer import Trainer
from headliner.model.transformer_summarizer import TransformerSummarizer

data = [('You are the stars, earth and sky for me!', 'I love you.'),
        ('You are great, but I have other plans.', 'I like you.')]

summarizer = TransformerSummarizer(embedding_size=64, max_prediction_len=20)
trainer = Trainer(batch_size=2, steps_per_epoch=100)
trainer.train(summarizer, data, num_epochs=2)
summarizer.save('/tmp/summarizer')

Prediction

The prediction can be done in a few lines of code:

from headliner.model.transformer_summarizer import TransformerSummarizer

summarizer = TransformerSummarizer.load('/tmp/summarizer')
summarizer.predict('You are the stars, earth and sky for me!')

Models

Currently available models include a basic encoder-decoder, an encoder-decoder with Luong attention, the transformer and a transformer on top of a pre-trained BERT-model:

from headliner.model.basic_summarizer import BasicSummarizer
from headliner.model.attention_summarizer import AttentionSummarizer
from headliner.model.transformer_summarizer import TransformerSummarizer
from headliner.model.bert_summarizer import BertSummarizer

basic_summarizer = BasicSummarizer()
attention_summarizer = AttentionSummarizer()
transformer_summarizer = TransformerSummarizer()
bert_summarizer = BertSummarizer()

Advanced training

Training using a validation split and model checkpointing:

from headliner.model.transformer_summarizer import TransformerSummarizer
from headliner.trainer import Trainer

train_data = [('You are the stars, earth and sky for me!', 'I love you.'),
              ('You are great, but I have other plans.', 'I like you.')]
val_data = [('You are great, but I have other plans.', 'I like you.')]

summarizer = TransformerSummarizer(num_heads=1,
                                   feed_forward_dim=512,
                                   num_layers=1,
                                   embedding_size=64,
                                   max_prediction_len=50)
trainer = Trainer(batch_size=8,
                  steps_per_epoch=50,
                  max_vocab_size_encoder=10000,
                  max_vocab_size_decoder=10000,
                  tensorboard_dir='/tmp/tensorboard',
                  model_save_path='/tmp/summarizer')

trainer.train(summarizer, train_data, val_data=val_data, num_epochs=3)

Advanced prediction

Prediction information such as attention weights and logits can be accessed via predict_vectors returning a dictionary:

from headliner.model.transformer_summarizer import TransformerSummarizer

summarizer = TransformerSummarizer.load('/tmp/summarizer')
summarizer.predict_vectors('You are the stars, earth and sky for me!')

Resume training

A previously trained summarizer can be loaded and then retrained. In this case the data preprocessing and vectorization is loaded from the model.

train_data = [('Some new training data.', 'New data.')] * 10

summarizer_loaded = TransformerSummarizer.load('/tmp/summarizer')
trainer = Trainer(batch_size=2)
trainer.train(summarizer_loaded, train_data)
summarizer_loaded.save('/tmp/summarizer_retrained')

Use pretrained GloVe embeddings

Embeddings in GloVe format can be injected in to the trainer as follows. Optionally, set the embedding to non-trainable.

trainer = Trainer(embedding_path_encoder='/tmp/embedding_encoder.txt',
                  embedding_path_decoder='/tmp/embedding_decoder.txt')

# make sure the embedding size matches to the embedding size of the files
summarizer = TransformerSummarizer(embedding_size=64,
                                   embedding_encoder_trainable=False,
                                   embedding_decoder_trainable=False)

Custom preprocessing

A model can be initialized with custom preprocessing and tokenization:

from headliner.preprocessing.preprocessor import Preprocessor

train_data = [('Some inputs.', 'Some outputs.')] * 10

preprocessor = Preprocessor(filter_pattern='',
                            lower_case=True,
                            hash_numbers=False)
train_prep = [preprocessor(t) for t in train_data]
inputs_prep = [t[0] for t in train_prep]
targets_prep = [t[1] for t in train_prep]

# Build tf subword tokenizers. Other custom tokenizers can be implemented
# by subclassing headliner.preprocessing.Tokenizer
from tensorflow_datasets.core.features.text import SubwordTextEncoder
tokenizer_input = SubwordTextEncoder.build_from_corpus(
inputs_prep, target_vocab_size=2**13, reserved_tokens=[preprocessor.start_token, preprocessor.end_token])
tokenizer_target = SubwordTextEncoder.build_from_corpus(
    targets_prep, target_vocab_size=2**13,  reserved_tokens=[preprocessor.start_token, preprocessor.end_token])

vectorizer = Vectorizer(tokenizer_input, tokenizer_target)
summarizer = TransformerSummarizer(embedding_size=64, max_prediction_len=50)
summarizer.init_model(preprocessor, vectorizer)

trainer = Trainer(batch_size=2)
trainer.train(summarizer, train_data, num_epochs=3)

Use pre-trained BERT embeddings

Pre-trained BERT models can be included as follows. Be aware that pre-trained BERT models are expensive to train and require custom preprocessing!

from headliner.preprocessing.bert_preprocessor import BertPreprocessor
from spacy.lang.en import English

train_data = [('Some inputs.', 'Some outputs.')] * 10

# use BERT-specific start and end token
preprocessor = BertPreprocessor(nlp=English()
train_prep = [preprocessor(t) for t in train_data]
targets_prep = [t[1] for t in train_prep]


from tensorflow_datasets.core.features.text import SubwordTextEncoder
from transformers import BertTokenizer
from headliner.model.bert_summarizer import BertSummarizer

# Use a pre-trained BERT embedding and BERT tokenizer for the encoder 
tokenizer_input = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer_target = SubwordTextEncoder.build_from_corpus(
    targets_prep, target_vocab_size=2**13,  reserved_tokens=[preprocessor.start_token, preprocessor.end_token])

vectorizer = BertVectorizer(tokenizer_input, tokenizer_target)
summarizer = BertSummarizer(num_heads=2,
                            feed_forward_dim=512,
                            num_layers_encoder=0,
                            num_layers_decoder=4,
                            bert_embedding_encoder='bert-base-uncased',
                            embedding_size_encoder=768,
                            embedding_size_decoder=768,
                            dropout_rate=0.1,
                            max_prediction_len=50))
summarizer.init_model(preprocessor, vectorizer)

trainer = Trainer(batch_size=2)
trainer.train(summarizer, train_data, num_epochs=3)

Training on large datasets

Large datasets can be handled by using an iterator:

def read_data_iteratively():
    return (('Some inputs.', 'Some outputs.') for _ in range(1000))

class DataIterator:
    def __iter__(self):
        return read_data_iteratively()

data_iter = DataIterator()

summarizer = TransformerSummarizer(embedding_size=10, max_prediction_len=20)
trainer = Trainer(batch_size=16, steps_per_epoch=1000)
trainer.train(summarizer, data_iter, num_epochs=3)

🤝 Contribute

We welcome all kinds of contributions such as new models, new examples and many more. See the Contribution guide for more details.

📝 Cite this work

Please cite Headliner in your publications if this is useful for your research. Here is an example BibTeX entry:

@misc{axelspringerai2019headliners,
  title={Headliner},
  author={Christian Schäfer & Dat Tran},
  year={2019},
  howpublished={\url{https://github.com/as-ideas/headliner}},
}

🏗 Maintainers

© Copyright

See LICENSE for details.

References

Text Summarization with Pretrained Encoders

Effective Approaches to Attention-based Neural Machine Translation

Acknowlegements

https://www.tensorflow.org/tutorials/text/transformer

https://github.com/huggingface/transformers

https://machinetalk.org/2019/03/29/neural-machine-translation-with-attention-mechanism/

Owner
Axel Springer Ideas Engineering GmbH
We are driving, shaping and coding the future of tech at Axel Springer.
Axel Springer Ideas Engineering GmbH
This is the offline-training-pipeline for our project.

offline-training-pipeline This is the offline-training-pipeline for our project. We adopt the offline training and online prediction Machine Learning

0 Apr 22, 2022
Code examples for my Write Better Python Code series on YouTube.

Write Better Python Code This repository contains the code examples used in my Write Better Python Code series published on YouTube: https:/

858 Dec 29, 2022
Build Text Rerankers with Deep Language Models

Reranker is a lightweight, effective and efficient package for training and deploying deep languge model reranker in information retrieval (IR), question answering (QA) and many other natural languag

Luyu Gao 140 Dec 06, 2022
💥 Fast State-of-the-Art Tokenizers optimized for Research and Production

Provides an implementation of today's most used tokenizers, with a focus on performance and versatility. Main features: Train new vocabularies and tok

Hugging Face 6.2k Dec 31, 2022
Associated Repository for "Translation between Molecules and Natural Language"

MolT5: Translation between Molecules and Natural Language Associated repository for "Translation between Molecules and Natural Language". Table of Con

67 Dec 15, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Jungil Kong 1.1k Jan 02, 2023
A combination of autoregressors and autoencoders using XLNet for sentiment analysis

A combination of autoregressors and autoencoders using XLNet for sentiment analysis Abstract In this paper sentiment analysis has been performed in or

James Zaridis 2 Nov 20, 2021
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
Pretrain CPM - 大规模预训练语言模型的预训练代码

CPM-Pretrain 版本更新记录 为了促进中文自然语言处理研究的发展,本项目提供了大规模预训练语言模型的预训练代码。项目主要基于DeepSpeed、Megatron实现,可以支持数据并行、模型加速、流水并行的代码。 安装 1、首先安装pytorch等基础依赖,再安装APEX以支持fp16。 p

Tsinghua AI 37 Dec 06, 2022
A collection of models for image - text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
A notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository

We provide a notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository. The notebook also shows how to segment the corpus using BPE tokenizatio

Computation for Indian Language Technology (CFILT) 9 Oct 13, 2022
Simple Annotated implementation of GPT-NeoX in PyTorch

Simple Annotated implementation of GPT-NeoX in PyTorch This is a simpler implementation of GPT-NeoX in PyTorch. We have taken out several optimization

labml.ai 101 Dec 03, 2022
Lumped-element impedance calculator and frequency-domain plotter.

fastZ: Lumped-Element Impedance Calculator fastZ is a small tool for calculating and visualizing electrical impedance in Python. Features include: Sup

Wesley Hileman 47 Nov 18, 2022
Topic Inference with Zeroshot models

zeroshot_topics Table of Contents Installation Usage License Installation zeroshot_topics is distributed on PyPI as a universal wheel and is available

Rita Anjana 55 Nov 28, 2022
A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code or write code yourself

Scriptfab - What is it? A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code

DevNugget 3 Jul 28, 2021
Contains the code and data for our #ICSE2022 paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences"

CodeFill This repository contains the code for our paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Namin

Software Analytics Lab 11 Oct 31, 2022
Every Google, Azure & IBM text to speech voice for free

TTS-Grabber Quick thing i made about a year ago to download any text with any tts voice, over 630 voices to choose from currently. It will split the i

16 Dec 07, 2022
Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow.

Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow. Documentation Proper documentation is available at

HUSEIN ZOLKEPLI 151 Jan 05, 2023
Multispeaker & Emotional TTS based on Tacotron 2 and Waveglow

This Repository contains a sample code for Tacotron 2, WaveGlow with multi-speaker, emotion embeddings together with a script for data preprocessing.

Ivan Didur 106 Jan 01, 2023