This repo uses a combination of logits and feature distillation method to teach the PSPNet model of ResNet18 backbone with the PSPNet model of ResNet50 backbone. All the models are trained and tested on the PASCAL-VOC2012 dataset.

Overview

PSPNet-logits and feature-distillation

Introduction

This repository is based on PSPNet and modified from semseg and Pixelwise_Knowledge_Distillation_PSPNet18 which uses a logits knowledge distillation method to teach the PSPNet model of ResNet18 backbone with the PSPNet model of ResNet50 backbone. All the models are trained and tested on the PASCAL-VOC2012 dataset(Enhanced Version).

Innovation and Limitations

This repo adds a feature distillation in the aux layer of PSPNet without a linear feature mapping since the teacher and student model's output dimension after the aux layer is the same. On the other hand, if you want to adapt this repo to other structures, a mapping should be needed. Also, the output of the aux layer is very close to which of the final layer, so you should pay attention to the overfitting problem. Or you can distillate the features in earlier layers and add a mapping, of course, just like Fitnet.

For reimplementation

Please download related datasets and symlink the relevant paths. The temperature parameter(T) and corresponding weights can be changed flexibly. All the numbers showed in the name of python code indicate the number of layers; for instance, train_50_18.py represents the distillation of 50 layers to 18 layers.

Please note that you should train a teacher model( PSPNet model of ResNet50 backbone) at first, and save the checkpoints or just use a well trained PSPNet50 model, which you can refer to the original public code at semseg, and you should download the initial models and corresponding lists in semseg and put them in right paths, also all the environmental requirements in this repo are the same as semseg.

Usage

  1. Requirement: PyTorch>=1.1.0, Python3, tensorboardX, GPU
  2. Clone the repository:
git clone https://github.com/asaander719/PSPNet-knowledge-distillation.git
  1. Download initialization models and lists, also trained models and predictions can be optional, by the link shows in semseg, and put them in files followed by instructions.
  2. Download official dataset PASCAL-VOC2012, please note that it is Enhanced Version,and put them in corresponding paths follwed by data lists.
  3. Train and test a teacher model: adjust parameters in config (voc2012_pspnet50.yaml), like layers. etc.., and the checkpoints will be saved automaticly, or you can just download a trained model, and put it in a right path.
python train_50.py
python test_50.py
  1. Train and test a student model(optional, only for comparison): adjust parameters in config (voc2012_pspnet18.yaml), like layers. etc.., and the checkpoints will be saved automaticly, or you can just download a trained model, and put it in a right path.
python train_18.py
python test_18.py
  1. Distillation and Test: the results should between the teacher and the student model.

Please note that you should adjust some parameters when you use fuctions in the file named model.

python train_50_18_my.py
python test_50_18.py

Reference

@misc{semseg2019, author={Zhao, Hengshuang}, title={semseg}, howpublished={\url{https://github.com/hszhao/semseg}}, year={2019} }

@inproceedings{zhao2017pspnet, title={Pyramid Scene Parsing Network}, author={Zhao, Hengshuang and Shi, Jianping and Qi, Xiaojuan and Wang, Xiaogang and Jia, Jiaya}, booktitle={CVPR}, year={2017} }

@inproceedings{zhao2018psanet, title={{PSANet}: Point-wise Spatial Attention Network for Scene Parsing}, author={Zhao, Hengshuang and Zhang, Yi and Liu, Shu and Shi, Jianping and Loy, Chen Change and Lin, Dahua and Jia, Jiaya}, booktitle={ECCV}, year={2018} }

Owner
LIAO Shuiying
LIAO Shuiying
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
Ensemble Visual-Inertial Odometry (EnVIO)

Ensemble Visual-Inertial Odometry (EnVIO) Authors : Jae Hyung Jung, Yeongkwon Choe, and Chan Gook Park 1. Overview This is a ROS package of Ensemble V

Jae Hyung Jung 95 Jan 03, 2023
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
CS_Final_Metal_surface_detection - This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021.

CS_Final_Metal_surface_detection This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021. The project is based on the dataset

Cuong Vo 1 Dec 29, 2021
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection

Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru

Siddhant Kumar 2 Feb 04, 2022
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022