Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Overview

Pre-trained image classification models for Jax/Haiku

Jax/Haiku Applications are deep learning models that are made available alongside pre-trained weights. These models can be used for prediction, feature extraction, and fine-tuning.

Available Models

  • MobileNetV1
  • ResNet, ResNetV2
  • VGG16, VGG19
  • Xception

Planned Releases

  • MobileNetV2, MobileNetV3
  • InceptionResNetV2, InceptionV3
  • EfficientNetV1, EfficientNetV2

Installation

Haikumodels require Python 3.7 or later.

  1. Needed libraries can be installed using "installation.txt".
  2. If Jax GPU support desired, must be installed seperately according to system needs.

Usage examples for image classification models

Classify ImageNet classes with ResNet50

import haiku as hk
import jax
import jax.numpy as jnp
from PIL import Image

import haikumodels as hm

rng = jax.random.PRNGKey(42)


def _model(images, is_training):
  net = hm.ResNet50()
  return net(images, is_training)


model = hk.transform_with_state(_model)

img_path = "elephant.jpg"
img = Image.open(img_path).resize((224, 224))

x = jnp.asarray(img, dtype=jnp.float32)
x = jnp.expand_dims(x, axis=0)
x = hm.resnet.preprocess_input(x)

params, state = model.init(rng, x, is_training=True)

preds, _ = model.apply(params, state, None, x, is_training=False)
# decode the results into a list of tuples (class, description, probability)
# (one such list for each sample in the batch)
print("Predicted:", hm.decode_predictions(preds, top=3)[0])
# Predicted:
# [('n02504013', 'Indian_elephant', 0.8784022),
# ('n01871265', 'tusker', 0.09620289),
# ('n02504458', 'African_elephant', 0.025362419)]

Extract features with VGG16

import haiku as hk
import jax
import jax.numpy as jnp
from PIL import Image

import haikumodels as hm

rng = jax.random.PRNGKey(42)

model = hk.without_apply_rng(hk.transform(hm.VGG16(include_top=False)))

img_path = "elephant.jpg"
img = Image.open(img_path).resize((224, 224))

x = jnp.asarray(img, dtype=jnp.float32)
x = jnp.expand_dims(x, axis=0)
x = hm.vgg.preprocess_input(x)

params = model.init(rng, x)

features = model.apply(params, x)

Fine-tune Xception on a new set of classes

from typing import Callable, Any, Sequence, Optional

import optax
import haiku as hk
import jax
import jax.numpy as jnp

import haikumodels as hm

rng = jax.random.PRNGKey(42)


class Freezable_TrainState(NamedTuple):
  trainable_params: hk.Params
  non_trainable_params: hk.Params
  state: hk.State
  opt_state: optax.OptState


# create your custom top layers and include the desired pretrained model
class ft_xception(hk.Module):

  def __init__(
      self,
      classes: int,
      classifier_activation: Callable[[jnp.ndarray],
                                      jnp.ndarray] = jax.nn.softmax,
      with_bias: bool = True,
      w_init: Callable[[Sequence[int], Any], jnp.ndarray] = None,
      b_init: Callable[[Sequence[int], Any], jnp.ndarray] = None,
      name: Optional[str] = None,
  ):
    super().__init__(name=name)
    self.classifier_activation = classifier_activation

    self.xception_no_top = hm.Xception(include_top=False)
    self.dense_layer = hk.Linear(
        output_size=1024,
        with_bias=with_bias,
        w_init=w_init,
        b_init=b_init,
        name="trainable_dense_layer",
    )
    self.top_layer = hk.Linear(
        output_size=classes,
        with_bias=with_bias,
        w_init=w_init,
        b_init=b_init,
        name="trainable_top_layer",
    )

  def __call__(self, inputs: jnp.ndarray, is_training: bool):
    out = self.xception_no_top(inputs, is_training)
    out = jnp.mean(out, axis=(1, 2))
    out = self.dense_layer(out)
    out = jax.nn.relu(out)
    out = self.top_layer(out)
    out = self.classifier_activation(out)


# use `transform_with_state` if models has batchnorm in it
# else use `transform` and then `without_apply_rng`
def _model(images, is_training):
  net = ft_xception(classes=200)
  return net(images, is_training)


model = hk.transform_with_state(_model)

# create your desired optimizer using Optax or alternatives
opt = optax.rmsprop(learning_rate=1e-4, momentum=0.90)


# this function will initialize params and state
# use the desired keyword to divide params to trainable and non_trainable
def initial_state(x_y, nonfreeze_key="trainable"):
  x, _ = x_y
  params, state = model.init(rng, x, is_training=True)

  trainable_params, non_trainable_params = hk.data_structures.partition(
      lambda m, n, p: nonfreeze_key in m, params)

  opt_state = opt.init(params)

  return Freezable_TrainState(trainable_params, non_trainable_params, state,
                              opt_state)


train_state = initial_state(next(gen_x_y))


# create your own custom loss function as desired
def loss_function(trainable_params, non_trainable_params, state, x_y):
  x, y = x_y
  params = hk.data_structures.merge(trainable_params, non_trainable_params)
  y_, state = model.apply(params, state, None, x, is_training=True)

  cce = categorical_crossentropy(y, y_)

  return cce, state


# to update params and optimizer, a train_step function must be created
@jax.jit
def train_step(train_state: Freezable_TrainState, x_y):
  trainable_params, non_trainable_params, state, opt_state = train_state
  trainable_params_grads, _ = jax.grad(loss_function,
                                       has_aux=True)(trainable_params,
                                                     non_trainable_params,
                                                     state, x_y)

  updates, new_opt_state = opt.update(trainable_params_grads, opt_state)
  new_trainable_params = optax.apply_updates(trainable_params, updates)

  train_state = Freezable_TrainState(new_trainable_params, non_trainable_params,
                                     state, new_opt_state)
  return train_state


# train the model on the new data for few epochs
train_state = train_step(train_state, next(gen_x_y))

# after training is complete it possible to merge
# trainable and non_trainable params to use for prediction
trainable_params, non_trainable_params, state, _ = train_state
params = hk.data_structures.merge(trainable_params, non_trainable_params)
preds, _ = model.apply(params, state, None, x, is_training=False)
You might also like...
3D ResNet Video Classification accelerated by TensorRT
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M

Reproduces ResNet-V3 with pytorch
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

DeepLab resnet v2 model in pytorch

pytorch-deeplab-resnet DeepLab resnet v2 model implementation in pytorch. The architecture of deepLab-ResNet has been replicated exactly as it is from

Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

Comments
  • Expected top-1 test accuracy

    Expected top-1 test accuracy

    Hi

    This is a fantastic project! The released checkpoints are super helpful!

    I am wondering what's the top-1 test accuracy that one should get using the released ResNet-50 checkpoints. I am able to reach 0.749 using the my own ImageNet dataloader implemented via Tensorflow Datasets. Is the number close to your results?

    BTW, it would also be very helpful if you could release your training and dataloading code for these models!

    Thanks,

    opened by xidulu 2
  • Fitting issue

    Fitting issue

    I was trying to use a few of your pre-trained models, in particular the ResNet50 and VGG16 for features extraction, but unfortunately I didn't manage to fit on the Nvidia Titan X with 12GB of VRAM my question is which GPU did you use for training, how much VRAM I need for use them?

    For the VGG16 the system was asking me for 4 more GB and for the ResNet50 about 20 more

    Thanks.

    opened by mattiadutto 1
Owner
Alper Baris CELIK
Alper Baris CELIK
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
Real life contra a deep learning project built using mediapipe and openc

real-life-contra Description A python script that translates the body movement into in game control. Welcome to all new real life contra a deep learni

Programminghut 7 Jan 26, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

49 Jan 07, 2023
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
Official Implementation for the "An Empirical Investigation of 3D Anomaly Detection and Segmentation" paper.

An Empirical Investigation of 3D Anomaly Detection and Segmentation Project | Paper Official PyTorch Implementation for the "An Empirical Investigatio

Eliahu Horwitz 55 Dec 14, 2022
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.

Gengshan Yang 59 Nov 25, 2022
Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
Simulating Sycamore quantum circuits classically using tensor network algorithm.

Simulating the Sycamore quantum supremacy circuit This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with

Feng Pan 46 Nov 17, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
Code for the paper: Fighting Fake News: Image Splice Detection via Learned Self-Consistency

Fighting Fake News: Image Splice Detection via Learned Self-Consistency [paper] [website] Minyoung Huh *12, Andrew Liu *1, Andrew Owens1, Alexei A. Ef

minyoung huh (jacob) 174 Dec 09, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022