Regression Metrics Calculation Made easy for tensorflow2 and scikit-learn

Overview

Regression Metrics

Installation

To install the package from the PyPi repository you can execute the following command:

pip install regressionmetrics

If you prefer, you can clone it and run the setup.py file. Use the following commands to get a copy from GitHub and install all dependencies:

git clone https://github.com/ashishpatel26/regressionmetrics.git
cd regressionmetrics
pip install .
  • Mean Absolute Error - sklearn, keras
  • Mean Square Error - sklearn, keras
  • Root Mean Square Error - sklearn, keras
  • Root Mean Square Logarithmic Error - sklearn, keras
  • Root Mean Square Logarithmic Error with negative value handle - sklearn
  • R2 Score - sklearn, keras
  • Adjusted R2 Score - sklearn, keras
  • Mean Absolute Percentage Error - sklearn, keras
  • Mean squared logarithmic Error - sklearn, keras
  • Symmetric mean absolute percentage error - sklearn, keras
  • Normalized Root Mean Squared Error - sklearn, keras

Usage

Usage with scikit learn :

from regressionmetrics.metrics import *

y_true = [3, 0.5, 2, 7]
y_pred = [2.5, 0.0, 2, -8]


print("R2Score: ",r2(y_true, y_pred))
print("Adjusted_R2_Score:",adj_r2(y_true, y_pred))
print("RMSE:", rmse(y_true, y_pred))
print("MAE:",mae(y_true, y_pred))
print("RMSLE with Neg Value:", rmsle_with_negval(y_true, y_pred))
print("MSE:", mse(y_true, y_pred))
print("MAPE: ", mape(y_true, y_pred))

Usage with Tensorflow keras:

from regressionmetrics.keras import *
import pandas as pd
import numpy as np

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.boston_housing.load_data(path="boston_housing.npz", test_split=0.2, seed=113)

model = keras.Sequential([
    layers.Dense(64, activation='relu', input_shape=(x_train.shape[1],)),
    layers.Dense(64, activation='relu'),
    layers.Dense(1)
])
model.compile(optimizer='rmsprop', loss='mse', metrics=[r2, mae, mse, rmse, mape, rmsle, nrmse])
model.fit(x_train, y_train, epochs=10, batch_size=32, validation_data=(x_test, y_test))
Epoch 1/10
 1/13 [=>............................] - ETA: 7s - loss: 1574.7567 - r2: 0.6597 - mae: 37.1803 - mse: 1574.7567 - rmse: 37.1802 - mape: 159.261313/13 [==============================] - 1s 15ms/step - loss: 270.0653 - r2: 0.9472 - mae: 11.5427 - mse: 270.0653 - rmse: 11.5427 - mape: 57.3519 - rmsle: 0.6445 - nrmse: 0.5735 - val_loss: 88.6351 - val_r2: 0.9727 - val_mae: 6.6028 - val_mse: 88.6351 - val_rmse: 6.6028 - val_mape: 29.6502 - val_rmsle: 0.3161 - val_nrmse: 0.2965
Epoch 2/10
 1/13 [=>............................] - ETA: 0s - loss: 74.6623 - r2: 0.9913 - mae: 5.5958 - mse: 74.6623 - rmse: 5.5958 - mape: 25.3655 - rmsl13/13 [==============================] - 0s 3ms/step - loss: 87.1876 - r2: 0.9856 - mae: 6.9466 - mse: 87.1876 - rmse: 6.9466 - mape: 33.4256 - rmsle: 0.3057 - nrmse: 0.3343 - val_loss: 81.7884 - val_r2: 0.9712 - val_mae: 6.6424 - val_mse: 81.7884 - val_rmse: 6.6424 - val_mape: 28.8687 - val_rmsle: 0.3334 - val_nrmse: 0.2887
Epoch 3/10
 1/13 [=>............................] - ETA: 0s - loss: 41.2790 - r2: 0.9722 - mae: 5.3798 - mse: 41.2790 - rmse: 5.3798 - mape: 28.7497 - rmsl13/13 [==============================] - 0s 3ms/step - loss: 103.6462 - r2: 0.9825 - mae: 7.1041 - mse: 103.6462 - rmse: 7.1041 - mape: 34.6278 - rmsle: 0.3231 - nrmse: 0.3463 - val_loss: 71.7539 - val_r2: 0.9769 - val_mae: 6.1455 - val_mse: 71.7539 - val_rmse: 6.1455 - val_mape: 27.5078 - val_rmsle: 0.2893 - val_nrmse: 0.2751
Epoch 4/10
 1/13 [=>............................] - ETA: 0s - loss: 113.6758 - r2: 0.9917 - mae: 6.6575 - mse: 113.6758 - rmse: 6.6575 - mape: 20.8683 - rm13/13 [==============================] - 0s 3ms/step - loss: 88.1601 - r2: 0.9823 - mae: 6.8479 - mse: 88.1601 - rmse: 6.8479 - mape: 32.5867 - rmsle: 0.3080 - nrmse: 0.3259 - val_loss: 63.3707 - val_r2: 0.9829 - val_mae: 6.0845 - val_mse: 63.3707 - val_rmse: 6.0845 - val_mape: 33.1628 - val_rmsle: 0.2747 - val_nrmse: 0.3316
Epoch 5/10
 1/13 [=>............................] - ETA: 0s - loss: 85.8188 - r2: 0.9893 - mae: 7.0097 - mse: 85.8188 - rmse: 7.0097 - mape: 34.8362 - rmsl13/13 [==============================] - 0s 3ms/step - loss: 82.3233 - r2: 0.9860 - mae: 6.5795 - mse: 82.3233 - rmse: 6.5795 - mape: 32.5198 - rmsle: 0.3105 - nrmse: 0.3252 - val_loss: 74.4783 - val_r2: 0.9813 - val_mae: 6.8936 - val_mse: 74.4783 - val_rmse: 6.8936 - val_mape: 41.9492 - val_rmsle: 0.3067 - val_nrmse: 0.4195
Epoch 7/10
 1/13 [=>............................] - ETA: 0s - loss: 105.6430 - r2: 0.9658 - mae: 9.4737 - mse: 105.6430 - rmse: 9.4737 - mape: 53.0854 - rm13/13 [==============================] - 0s 3ms/step - loss: 76.0740 - r2: 0.9856 - mae: 6.4234 - mse: 76.0740 - rmse: 6.4234 - mape: 31.8728 - rmsle: 0.2828 - nrmse: 0.3187 - val_loss: 104.1779 - val_r2: 0.9679 - val_mae: 7.5539 - val_mse: 104.1779 - val_rmse: 7.5539 - val_mape: 30.9401 - val_rmsle: 0.3692 - val_nrmse: 0.3094
Epoch 8/10
 1/13 [=>............................] - ETA: 0s - loss: 100.0114 - r2: 0.9833 - mae: 6.8492 - mse: 100.0114 - rmse: 6.8492 - mape: 27.9621 - rm13/13 [==============================] - 0s 4ms/step - loss: 68.4268 - r2: 0.9892 - mae: 5.9540 - mse: 68.4268 - rmse: 5.9540 - mape: 29.7586 - rmsle: 0.2623 - nrmse: 0.2976 - val_loss: 171.7968 - val_r2: 0.9412 - val_mae: 10.5855 - val_mse: 171.7968 - val_rmse: 10.5855 - val_mape: 47.9010 - val_rmsle: 0.7561 - val_nrmse: 0.4790
Epoch 9/10
 1/13 [=>............................] - ETA: 0s - loss: 291.8670 - r2: 0.9725 - mae: 13.9899 - mse: 291.8670 - rmse: 13.9899 - mape: 61.3658 - 13/13 [==============================] - 0s 3ms/step - loss: 92.3889 - r2: 0.9796 - mae: 6.8932 - mse: 92.3889 - rmse: 6.8932 - mape: 33.2856 - rmsle: 0.3333 - nrmse: 0.3329 - val_loss: 67.2208 - val_r2: 0.9808 - val_mae: 5.8498 - val_mse: 67.2208 - val_rmse: 5.8498 - val_mape: 26.4504 - val_rmsle: 0.2680 - val_nrmse: 0.2645
Epoch 10/10
 1/13 [=>............................] - ETA: 0s - loss: 97.0853 - r2: 0.9923 - mae: 5.9866 - mse: 97.0853 - rmse: 5.9866 - mape: 24.9878 - rmsl13/13 [==============================] - 0s 3ms/step - loss: 78.3823 - r2: 0.9856 - mae: 6.5958 - mse: 78.3823 - rmse: 6.5958 - mape: 32.8136 - rmsle: 0.3025 - nrmse: 0.3281 - val_loss: 69.5314 - val_r2: 0.9787 - val_mae: 6.8302 - val_mse: 69.5314 - val_rmse: 6.8302 - val_mape: 37.3933 - val_rmsle: 0.2974 - val_nrmse: 0.3739

😃 Thanks for reading and forking.

You might also like...
Hitters Linear Regression - Hitters Linear Regression With Python
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

A real-time speech emotion recognition application using Scikit-learn and gradio
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Python package for Bayesian Machine Learning with scikit-learn API
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

scikit-learn: machine learning in Python
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

Comments
  • Very nice toolkit

    Very nice toolkit

    This isn't really an issue. I wanted to thank you for sharing such a nice toolkit for regression tasks with tensorflow

    Do you have a similar toolkit for classification?

    opened by happypanda5 0
Releases(v1.4.0)
  • v1.4.0(Oct 30, 2021)

    • Changelog for v1.4.0 (2022-01-13)

    • Name clashes resolved with keras names
    • Changelog for v1.3.0 (2021-11-18)

    • new regresson metrics are added with details explaination
    • Changelog for v1.2.0 (2021-10-31)

    • Adjusted r2 score error solved
    • Changelog for v1.1.0 (2021-10-31)

    • SomeError solved
    • Changelog for v1.0.0 (2021-10-31)

    • regressionmetrics package first release 1.0.0.
    Source code(tar.gz)
    Source code(zip)
Owner
Ashish Patel
AI Researcher & Senior Data Scientist at Softweb Solutions Avnet Solutions(Fortune 500) | Rank 3 Kaggle Kernel Master
Ashish Patel
Repository For Programmers Seeking a platform to show their skills

Programming-Nerds Repository For Programmers Seeking Pull Requests In hacktoberfest ❓ What's Hacktoberfest 2021? Hacktoberfest is the easiest way to g

42 Oct 29, 2022
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

ZiNiU WaN 176 Dec 15, 2022
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
'Solving the sampling problem of the Sycamore quantum supremacy circuits

solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s

Feng Pan 29 Nov 28, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Antoine Caillon 589 Jan 02, 2023
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl

Nicholas Sharp 10 Sep 30, 2022
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
CAR-API: Cityscapes Attributes Recognition API

CAR-API: Cityscapes Attributes Recognition API This is the official api to download and fetch attributes annotations for Cityscapes Dataset. Content I

Kareem Metwaly 5 Dec 22, 2022
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
Scenarios, tutorials and demos for Autonomous Driving

The Autonomous Driving Cookbook (Preview) NOTE: This project is developed and being maintained by Project Road Runner at Microsoft Garage. This is cur

Microsoft 2.1k Jan 02, 2023
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video c

Facebook Research 297 Jan 06, 2023
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022