基于AlphaPose的TensorRT加速

Overview

1. Requirements

  • CUDA 11.1
  • TensorRT 7.2.2
  • Python 3.8.5
  • Cython
  • PyTorch 1.8.1
  • torchvision 0.9.1
  • numpy 1.17.4 (numpy版本过高会出报错 this issue )
  • python-package setuptools >= 40.0, reported by this issue

2. Results

AlphaPose 存在多个目标检测+姿态估计模型的组合, 本仓库(fork from AlphaPose )仅对YOLOv3_SPP + Fast Pose 进行加速。


AlphaPose_trt inference rst

AlphaPose在数据预处理部分使用YOLOv3-SPP模型检测出一幅图像中的多个人物,然后将这些人物图像送入到FastPose模型中进行姿态估计。 我们对YOLOv3_SPP模型以及FastPose模型都进行了加速, 并记录了加速前后的mAP值,验证集来自MSCOCO val2017 。 其中ground truth box表示FastPose模型 的检测精度, detection boxes表示YOLOv3_SPP + FastPose模型的检测精度。

Method ground truth box [email protected] detection boxes [email protected]
AlphaPose 0.743 0.718
AlphaPose_trt 0.743 0.718

所有的测试过程都对GPU以及Memory进行了锁频

GPU Frequency = 1509MHz, Memory Frequency = 5001MHz,具体操作如下:

nvidia-smi -pm 1
nvidia-smi -q -d clock  # 查看memory以及gpu的频率
nvidia-smi -ac memoryFrq, gpuFrq
nvidia-smi -lgc gpuFrq,gpuFrq   # 将GPU进行锁频

2.1 YOLOv3-SPP speed up

下表记录了YOLOv3_SPP模型在不同batch size下的推理时间以及吞吐量,并计算了加速比(第三列以及第四列)。

实验环境为:Tesla T4

吞吐量: Throughput = 1000 / latency * batchsize

时延: Latency speed up = original latency / trt latency

model Batchsize Latency (ms) Throughput Latency Speedup Throughput speedup Volatile GPU-Util
YOLOv3-SPP 1 54.1 18.48 1x 1x 87%
2 93.9 21.30 93%
4 172.6 23.17 98%
8 322.8 24.78 100%
YOLOv3-SPP_trt 1 20.1 49.75 2.7x 2.7x 100%
2 33.7 59.35 2.8x 2.8x 100%
4 60.5 66.12 2.9x 2.9x 100%
8 115.5 69.26 2.8x 2.8x 100%
代码实现参考8.2部分

2.2 Fast Pose speed up

下表记录了Fast Pose模型在不同batch size下的推理时间以及吞吐量,并计算了加速比(第三列以及第四列)。

实验环境为:Tesla T4

model Batchsize Latency (ms) Throughput Latency Speedup Throughput speedup Volatile GPU-Util
FastPose 1 23.9 41.84 1x 1x 30%
2 24.6 81.30 39%
4 27.9 143.37 64%
8 33.2 240.96 99%
16 56.6 282.68 99%
32 105.8 302.46 99%
64 206.2 310.38 100%
FastPose_trt 1 1.49 671.14 16.0x 16.0x 3%
2 2.32 862.07 10.6x 10.6x 3%
4 4.06 985.22 6.9x 6.9x 38%
8 7.69 1040.31 4.3x 4.3x 100%
16 15.16 1055.41 3.7x 3.7x 100%
32 29.98 1067.38 3.5x 3.5x 100%
64 59.67 1072.57 3.5x 3.5x 100%
代码实现参考8.1部分

2.3 YOLOv3-SPP + FastPose speed up

下表记录了YOLOv3_SPP + FastPose模型在不同batch size下的推理时间以及吞吐量,并计算了加速比(第三列以及第四列)。

实验环境为:Tesla T4

model Batchsize Latency (ms) Throughput Latency Speedup Throughput speedup Volatile GPU-Util
AlphaPose 1 78.0 12.82 1x 1x 87%
2 118.5 16.87 94%
4 200.5 19.95 97%
8 356 22.47 100%
AlphaPose_trt 1 21.59 46.32 3.6x 3.6x 100%
2 36.02 55.52 3.3x 3.3x 100%
4 64.56 61.96 3.1x 3.1x 100%
8 123.19 64.94 3.5x 3.5x 100%
代码实现参考8.3部分

3. Code installation

AlphaPose的安装参考自 ,主要有两种安装方式

3.1 使用conda进行安装

Install conda from here

# 1. Create a conda virtual environment.
conda create -n alphapose python=3.6 -y
conda activate alphapose

# 2. Install PyTorch
conda install pytorch==1.1.0 torchvision==0.3.0

# 3. Get AlphaPose
git clone https://github.com/MVIG-SJTU/AlphaPose.git
# git pull origin pull/592/head if you use PyTorch>=1.5
cd AlphaPose


# 4. install
export PATH=/usr/local/cuda/bin/:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64/:$LD_LIBRARY_PATH
python -m pip install cython
sudo apt-get install libyaml-dev
################Only For Ubuntu 18.04#################
locale-gen C.UTF-8
# if locale-gen not found
sudo apt-get install locales
export LANG=C.UTF-8
######################################################
python setup.py build develop

3.2 使用pip进行安装

# 1. Install PyTorch
pip3 install torch==1.1.0 torchvision==0.3.0

# Check torch environment by:  python3 -m torch.utils.collect_env

# 2. Get AlphaPose
git clone https://github.com/MVIG-SJTU/AlphaPose.git
# git pull origin pull/592/head if you use PyTorch>=1.5
cd AlphaPose

# 3. install
export PATH=/usr/local/cuda/bin/:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64/:$LD_LIBRARY_PATH
pip install cython
sudo apt-get install libyaml-dev
python3 setup.py build develop --user

4. YOLOv3-SPP(PyTorch) to engine

YOLOv3-SPP(PyTorch)可以转成static shape的engine模型以及dynamic shape的engine模型。前者表示engine的输入数据只能是 固定的尺寸,而后者表示我们输入的数据尺寸可以是动态变化的,但是变化的范围要在我们转成engine时所设置的范围内。

4.1 转成static shape的engine模型

(1) YOLOv3_SPP转成onnx模型

下载YOLOv3_SPP的cfg 以及weights ,并分别放在 ./detector/yolo/cfg/以及./detector/yolo/data/文件夹下。 YOLOv3_SPP输入数据的尺寸默认为: 1x3x608x608

python ./darknet2onnx.py 
--cfg ./detector/yolo/cfg/yolov3-spp.cfg 
--weight ./detector/yolo/data/yolov3-spp.weights

执行该命令之后,会在当前目录下产生一个yolov3_spp_static.onnx模型

(2) 对模型进行修正

由于YOLOv3-SPP模型中存在Padding操作,trt不能直接识别,因此需要onnx进行修改 this issue。可能需要额外下载tensorflow-gpu == 2.4.1以及polygraphy == 0.22.0模块。

polygraphy surgeon sanitize yolov3_spp_static.onnx 
--fold-constants 
--output yolov3_spp_static_folded.onnx

执行该命令之后,会在当前目录下产生一个yolov3_spp_static_folded.onnx模型

(3) 由onnx模型生成engine

需要注册ScatterND plugin,将this repository 下的plugins文件夹以及Makifile文件放到当前目录下,然后make MakeFile文件,进行编译,编译之后会在build文件夹下产生 一个ScatterND.so动态库。

trtexec --onnx=yolov3_spp_static_folded.onnx 
--explicitBatch 
--saveEngine=yolov3_spp_static_folded.engine 
--workspace=10240 --fp16 --verbose 
--plugins=build/ScatterND.so

执行该命令之后,会在当前目录下产生一个yolov3_spp_static_folded.engine模型

4.2 转成dynamic shape的engine模型

(1) YOLOv3_SPP模型转成onnx模型

输入数据的默认尺寸为: -1x3x608x608 (-1表示batch size可变)

python darknet2onnx_dynamic.py 
--cfg ./detector/yolo/cfg/yolov3-spp.cfg 
--weight ./detector/yolo/data/yolov3-spp.weights

执行该命令之后,会在当前目录下产生一个yolov3_spp_-1_608_608_dynamic.onnx模型

(2) 对onnx模型就行修改

polygraphy surgeon sanitize yolov3_spp_-1_608_608_dynamic.onnx 
--fold-constants 
--output yolov3_spp_-1_608_608_dynamic_folded.onnx

(3) 由onnx模型转成engine

minShapes设置能够输入数据的最小尺寸,optShapes可以与minShapes保持一致,maxShapes设置输入数据的最大尺寸,这三个是必须要设置的,可通过trtexec -h查看具体用法。 转换模型的时候一定需要将ScatterND.so动态库进行加载,不然可能会报该plugin无法识别的错误。

trtexec --onnx=yolov3_spp_-1_608_608_dynamic_folded.onnx 
--explicitBatch 
--saveEngine=yolov3_spp_-1_608_608_dynamic_folded.engine 
--workspace=10240 --fp16 --verbose 
--plugins=build/ScatterND.so 
--minShapes=input:1x3x608x608 
--optShapes=input:1x3x608x608 
--maxShapes=input:64x3x608x608 
--shapes=input:1x3x608x608

执行该命令之后,会在当前目录下产生一个yolov3_spp_-1_608_608_dynamic_folded.engine 模型(之后 我们可以传入不同batch size的输入数据进行推理)

5. FastPose(PyTorch) to engine

5.1 生成static shape的engine模型

(1) FastPose转成onnx模型

模型输入数据的默认尺寸为: 1x3x256x192

python pytorch2onnx.py --cfg ./configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml 
--checkpoint ./pretrained_models/fast_res50_256x192.pth

执行完该指令之后,会在当前目录下生成一个fastPose.onnx模型

(2) onnx转成engine模型

trtexec trtexec --onnx=fastPose.onnx 
-saveEngine=fastPose.engine --workspace=10240 
--fp16 
--verbose

执行该命令之后,会在当前目录下生成一个fastPose.engine模型

5.2 生成dynamic shape的engine模型

(1) 生成onnx模型

模型输入数据的默认尺寸为:-1x3x256x192 (-1表示batch size可变)

python pytorch2onnx_dynamic.py 
--cfg ./configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml 
--checkpoint ./pretrained_models/fast_res50_256x192.pth

执行该命令之后,会在当前目录下生成一个alphaPose_-1_3_256_192_dynamic.onnx模型

(2) onnx模型转成engine模型

trtexec --onnx=alphaPose_-1_3_256_192_dynamic.onnx 
--saveEngine=alphaPose_-1_3_256_192_dynamic.engine 
--workspace=10240 --fp16 --verbose 
--minShapes=input:1x3x256x192 
--optShapes=input:1x3x256x192 
--maxShapes=input:128x3x256x192 
--shapes=input:1x3x256x192 
--explicitBatch

执行该命令之后,会在当前目录下生成一个alphaPose_-1_3_256_192_dynamic.engine模型

上面的所有模型都可以从baidu Pan 获取(提取码: cumt)

6. Inference

这一部分主要使用加速前后的模型对图像以及视频进行检测

6.1 对图像进行检测

将图像放在example/demo文件夹下,然后执行下面的指令,检测结果将保存在examples/res/vis文件夹下

(1) 使用未加速模型对图像进行检测

python inference.py --cfg ./configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml 
--checkpoint ./pretrained_models/fast_res50_256x192.pth  
--save_img  --showbox 
--indir ./examples/demo

(2) 使用tensorRT加速模型对图像进行检测

python trt_inference.py 
--yolo_engine ./yolov3_spp_static_folded.engine 
--pose_engine ./fastPose.engine 
--cfg ./configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml 
--save_img  
--indir ./examples/demo 
--dll_file ./build/ScatterND.so

如果希望检测结果对人体进行目标检测,可以加上--showbox

6.2 对视频进行检测

将视频放在video文件夹下,推理的结果将保存在examples/res文件夹下

(1) 使用未加速模型对视频进行检测

python inference.py --cfg ./configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml
--checkpoint ./pretrained_models/fast_res50_256x192.pth 
--save_video
--video ./videos/demo.avi

(2) 使用tensorRT加速模型对视频进行检测

python trt_inference.py --yolo_engine ./yolov3_spp_static_folded.engine
--cfg ./configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml
--save_video
--video ./videos/demo_short.avi 
--dll_file ./build/ScatterND.so
--pose_engine ./fastPose.engine 
--detector yolo

注意:在对视频的检测过程中,如果使用加速的YOLOv3_SPP模型会产生bug,因为这里使用未加速的YOLOv3_SPP 模型,在后续的工作中会针对该bug对程序进行改进。其中--detector yolo表示使用未加速的YOLOv3_SPP模型,--detector yolo_trt表示使用加速的YOLOv3_SPP模型

7. Validation

该部分使用加速前后的模型对MSCOCO 2017的验证集val2017 进行测试。 将annotations以及val207放到data/coco文件夹下。

(1) 使用未加速的模型进行验证

python validate.py --cfg ./configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml 
--checkpoint ./pretrained_models/fast_res50_256x192.pth  
--flip-test
--detector yolo

(2) 使用加速的模型进行验证

python validate_trt.py --cfg ./configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml 
--pose_engine ./fastPose.engine 
--yolo_engine ./yolov3_spp_static_folded.engine 
--dll_file ./build/ScatterND.so 
--flip-test
--detector yolo_trt

8. Speed Up Validation

8.1 FastPose模型加速效果验证

可以使用下面命令对FastPose人体姿态检测模型的加速效果进行验证,这里使用的是dynamic shape的engine进行推理。

python demo_trt_fastpose.py 
--cfg ./configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml 
--checkpoint ./pretrained_models/fast_res50_256x192.pth 
--engine_path ./alphaPose_-1_3_256_192_dynamic.engine --batch 1

8.2 YOLOv3_SPP模型加速效果验证

可以使用下面命令对YOLOv3_SPP人体目标检测的加速效果进行验证。

python demo_trt_yolov3_spp.py --cfg ./detector/yolo/cfg/yolov3-spp.cfg 
--weight ./detector/yolo/data/yolov3-spp.weights 
--engine_path ./yolov3_spp_-1_608_608_dynamic_folded.engine
--batch 1

8.3 AlphaPose(YOLOv3_SPP + FastPose)

可以使用下面命令对AlphaPose模型的加速效果进行验证。

python demo_trt_alphapose.py 
--fastpose_cfg ./configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml
--yolo_cfg ./detector/yolo/cfg/yolov3-spp.cfg
--weight ./detector/yolo/data/yolov3-spp.weights
--checkpoint ./pretrained_models/fast_res50_256x192.pth
--fastpose_engine ./alphaPose_-1_3_256_192_dynamic.engine
--yolo_engine ./yolov3_spp_-1_608_608_dynamic_folded.engine
--batch 1

9. TODO

  • 目标检测使用轻量级网络(YOLOv3-tiny, YOLOv4_tiny等)
  • 使用numpy+pycuda进行推理加速
  • 模型蒸馏
  • 模型剪枝
  • 使用C++的API实现TensorRT加速

10. Citation

Please cite these papers in your publications if it helps your research:

@inproceedings{fang2017rmpe,
  title={{RMPE}: Regional Multi-person Pose Estimation},
  author={Fang, Hao-Shu and Xie, Shuqin and Tai, Yu-Wing and Lu, Cewu},
  booktitle={ICCV},
  year={2017}
}

@article{li2018crowdpose,
  title={CrowdPose: Efficient Crowded Scenes Pose Estimation and A New Benchmark},
  author={Li, Jiefeng and Wang, Can and Zhu, Hao and Mao, Yihuan and Fang, Hao-Shu and Lu, Cewu},
  journal={arXiv preprint arXiv:1812.00324},
  year={2018}
}

@inproceedings{xiu2018poseflow,
  author = {Xiu, Yuliang and Li, Jiefeng and Wang, Haoyu and Fang, Yinghong and Lu, Cewu},
  title = {{Pose Flow}: Efficient Online Pose Tracking},
  booktitle={BMVC},
  year = {2018}
}

11. Reference

(1) AlphaPose

(2) trt-samples-for-hackathon-cn

(3) pytorch-YOLOv4

(4) darknet

A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph

Keren Ye 35 Nov 20, 2022
Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification We provide the codes for repr

12 Dec 12, 2022
An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

GLOM An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this

50 Oct 19, 2022
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

Yuxuan Liu 305 Dec 19, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

James Lin 101 Dec 13, 2022
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
Code for SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021)

SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021) SyncTwin is a treatment effect estimation method tailored for observat

Zhaozhi Qian 3 Nov 03, 2022
Bachelor's Thesis in Computer Science: Privacy-Preserving Federated Learning Applied to Decentralized Data

federated is the source code for the Bachelor's Thesis Privacy-Preserving Federated Learning Applied to Decentralized Data (Spring 2021, NTNU) Federat

Dilawar Mahmood 25 Nov 30, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Daniel Roich 58 Dec 24, 2022
A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.

bbc-speech-segmenter: Voice Activity Detection & Speaker Diarization A complete speech segmentation system using Kaldi and x-vectors for voice activit

BBC 16 Oct 27, 2022
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat

Alejandro Montanez 0 Jan 21, 2022
[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore

[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6101 of Semester 1, AY2021-2022, starting from 08/2021. The instructors of

AccSrd 1 Sep 22, 2022
OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022