Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Overview

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity

Pytorch implementation for "Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity" (CVPR 2022, link TBD) by Weiyao Wang, Matt Feiszli, Heng Wang, Jitendra Malik, and Du Tran. We propose a framework for open-world instance segmentation, Generic Grouping Network (GGN), which exploits pseudo Ground Truth training strategy. On the same backbone, GGN produces impressive AR gains compared to closed-world training on cross-category generalization (+11% VOC to Non-VOC) and cross-dataset generalization (+5.2% COCO to UVO).

What is it? Open-world instance segmentation requires a model to group pixels into object instances without a pre-defined taxonomy, that is, both "seen" categories (those present during training) and "unseen" categories (not seen during training). There is generally a large performance gap between the seen and unseen domains. For example, a baseline Mask R-CNN miss 15 annotated masks in the example below. Without additional training data or annotations, Mask R-CNN trained with GGN framework produces 9 more segments correctly, being much closer to ground truth annotations.

How we do it? Our approach first learns a pairwise affinity predictor that captures correctly if two pixels belong to same instance or not. We demonstrate such pairwise affinity representation generalizes well to unseen domains. We then use a grouping module (e.g. MCG) to extract and rank segments from predicted PA. We can run this on any image dataset without using annotations; we extract highest ranked segments as "pseudo ground truth" candidate masks. This is a large and category-agnostic set; we add it to our (much smaller) datasets of curated annotations to train a detector.


About the code. This repo is built based on mmdetection with the addition of OLN backbone (concurrent work). The repo is tested under Python 3.7, PyTorch 1.7.0, Cuda 11.0, and mmcv==1.2.5. We thank authors of OLN for releasing their work to facilitate research.

Model zoo

Below we release PA predictor models, pseudo-GT generated by PA predictors and GGN trained with both annotated-GT and pseudo-GT. We also release some of the processed annotations from LVIS to conduct cross-category generalization experiments.

Training Eval url Baseline AR GGN AR Top-K Pseudo
Person, COCO Non-Person, COCO PA/Pseudo/GGN 4.9 20.9 3
VOC, COCO Non-VOC, COCO PA/Pseudo/Pseudo-OLN/ GGN/GGN-OLN 19.9 28.7 (33.7 with OLN) 3
COCO, LVIS Non-COCO, LVIS PA/Pseudo/GGN 16.5 20.4 1
Non-COCO, LVIS COCO PA/Pseudo/GGN 21.7 23.6 1
COCO UVO PA/Pseudo/GGN 40.1 43.4 3
COCO, random init ImageNet PA/Pseudo/GGN 10

We remark using large-scale pre-training in the last row as initialization and finetune GGN on COCO with pseudo-GT on COCO gives further improvement (45.3 on UVO), with model.

Installation

This repo is built based on mmdetection.

You can use following commands to create conda env with related dependencies.

conda create -n ggn python=3.7 -y
conda activate ggn
conda install pytorch=1.7.0 torchvision cudatoolkit=11.0 -c pytorch -y
pip install mmcv-full
pip install -r requirements.txt
pip install -v -e .

Please also refer to get_started.md for more details of installation.

Next you will need to build the library for our grouping module:

cd pa_lib/cython_lib
python3 setup.py build_ext --inplace

Data Preparation

Download and extract COCO 2017 train and val images with annotations from http://cocodataset.org. We expect the directory structure to be the following:

path/to/coco/
  annotations/  # annotation json files
  train2017/    # train images
  val2017/      # val images

Our work also uses LVIS, UVO and ADE20K. To use ADE20K, please convert them into COCO-style annotations.

Training of pairwise affinity predictor

bash tools/dist_train.sh configs/pairwise_affinity/pa_train.py ${NUM_GPUS} --work-dir ${WORK_DIR}

Test PA

We provide a tool tools/test_pa.py to directly evaluate PA performance (e.g. on PA prediction and on grouped masks).

python tools/test_pa.py configs/pairwise_affinity/pa_train.py ${WORK_DIR}/latest.pth --eval pa --eval-proposals --test-partition nonvoc

Extracting pseudo-GT masks

We first begin by extracting masks. Example config pa_extract.py extracts pseudo-GT masks from PA trained on VOC subsets of COCO. use-gt-masks flag asks the pipeline to compute maximum IoU an extracted masks has with the GT. It is recommended to split the dataset into multiple shards to run extractions. On original image resolution and Nvidia V100 machine, it takes about 4.8s per image to run the full pipeline (compute PA, run grouping, ranking then compute IoU with annotated GT) without globalization and trained ranker or 10s with globalization and trained ranker.

python tools/extract_pa_masks.py configs/pairwise_affinity/pa_extract.py ${PA_MODEL_PATH} --out ${OUT_DIR}/masks.json --use-gt-masks 1

The extracted masks will be stored in JSON with the following format

[
  [segm1, segm2,..., segm20] ## Result of an image
  ...
]

We refer to tools/merge_annotations.py for reference on formatting the extracted masks as a new COCO-style annotation file. We remark that tools/interpolate_extracted_masks.py may be necessary if not running extraction on original image resolution.

Training of GGN

Please specify additional_ann_file with the extracted pseudo-GT in previous step in class_agn_mask_rcnn_pa.py.

bash tools/dist_train.sh configs/mask_rcnn/class_agn_mask_rcnn_pa.py ${NUM_GPUS}

class_agn_mask_rcnn_gn_online.py is used to train ImageNet extracted masks since there are too many annotations and we cannot store everything in a single json file without OOM. We will need to break it into per-image annotations in the format of "{image_id}.json".

Testing

python tools/test.py configs/mask_rcnn/class_agn_mask_rcnn.py ${WORK_DIR}/latest.pth --eval segm

To cite this work

@article{wang2022ggn,
  title={Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity},
  author={Wang, Weiyao and Feiszli, Matt and Wang, Heng and Malik, Jitendra and Tran, Du},
  journal={CVPR},
  year={2022}
}

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details.

Owner
Meta Research
Meta Research
Continuous Time LiDAR odometry

CT-ICP: Elastic SLAM for LiDAR sensors This repository implements the SLAM CT-ICP (see our article), a lightweight, precise and versatile pure LiDAR o

385 Dec 29, 2022
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning. Please check https://ncvx.org for detailed instruction

SUN Group @ UMN 28 Aug 03, 2022
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at

Soohwan Kim 32 Nov 07, 2022
Official implementation of Pixel-Level Bijective Matching for Video Object Segmentation

BMVOS This is the official implementation of Pixel-Level Bijective Matching for Video Object Segmentation, to appear in WACV 2022. @article{cho2021pix

Suhwan Cho 13 Dec 14, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
Code base for the paper "Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation"

This repository contains code for the paper Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiati

8 Aug 28, 2022
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular Depth Estimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised d

Hang 94 Dec 25, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach

Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach Thanh Luan Nguyen, Tri Nhu Do, Georges Kaddoum

Thanh Luan Nguyen 2 Oct 10, 2022
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
Source Code of NeurIPS21 paper: Recognizing Vector Graphics without Rasterization

YOLaT-VectorGraphicsRecognition This repository is the official PyTorch implementation of our NeurIPS-2021 paper: Recognizing Vector Graphics without

Microsoft 49 Dec 20, 2022