Data stream analytics: Implement online learning methods to address concept drift in data streams using the River library. Code for the paper entitled "PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data Streams" accepted in IEEE GlobeCom 2021.

Overview

PWPAE-Concept-Drift-Detection-and-Adaptation

This is the code for the paper entitled "PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data Streams" published in 2021 IEEE Global Communications Conference (GLOBECOM).
Authors: Li Yang, Dimitrios Michael Manias, and Abdallah Shami
Organization: The Optimized Computing and Communications (OC2) Lab, ECE Department, Western University

This repository also introduces concept drift definitions and online machine learning methods for data stream analytics using the River library.

Another tutorial code for concept drift, online machine learning, and data stream analytics can be found in: OASW-Concept-Drift-Detection-and-Adaptation

Concept Drift

In non-stationary and dynamical environments, such as IoT environments, the distribution of input data often changes over time, known as concept drift. The occurrence of concept drift will result in the performance degradation of the current trained data analytics model. Traditional offline machine learning (ML) models cannot deal with concept drift, making it necessary to develop online adaptive analytics models that can adapt to the predictable and unpredictable changes in data streams.

To address concept drift, effective methods should be able to detect concept drift and adapt to the changes accordingly. Therefore, concept drift detection and adaptation are the two major steps for online learning on data streams.

Drift Detection

  • Adaptive Windowing (ADWIN) is a distribution-based method that uses an adaptive sliding window to detect concept drift based on data distribution changes. ADWIN identifies concept drift by calculating and analyzing the average of certain statistics over the two sub-windows of the adaptive window. The occurrence of concept drift is indicated by a large difference between the averages of the two sub-windows. Once a drift point is detected, all the old data samples before that drift time point are discarded.

    • Albert Bifet and Ricard Gavalda. "Learning from time-changing data with adaptive windowing." In Proceedings of the 2007 SIAM international conference on data mining, pp. 443-448. Society for Industrial and Applied Mathematics, 2007.
    from river.drift import ADWIN
    adwin = ADWIN()
  • Drift Detection Method (DDM) is a popular model performance-based method that defines two thresholds, a warning level and a drift level, to monitor model's error rate and standard deviation changes for drift detection.

    • João Gama, Pedro Medas, Gladys Castillo, Pedro Pereira Rodrigues: Learning with Drift Detection. SBIA 2004: 286-295
    from river.drift import DDM
    ddm = DDM()

Drift Adaptation

  • Hoeffding tree (HT) is a type of decision tree (DT) that uses the Hoeffding bound to incrementally adapt to data streams. Compared to a DT that chooses the best split, the HT uses the Hoeffding bound to calculate the number of necessary samples to select the split node. Thus, the HT can update its node to adapt to newly incoming samples.

    • G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In KDD’01, pages 97–106, San Francisco, CA, 2001. ACM Press.
    from river import tree
    model = tree.HoeffdingTreeClassifier(
         grace_period=100,
         split_confidence=1e-5,
         ...
    )
  • Extremely Fast Decision Tree (EFDT), also named Hoeffding Anytime Tree (HATT), is an improved version of the HT that splits nodes as soon as it reaches the confidence level instead of detecting the best split in the HT.

    • C. Manapragada, G. Webb, and M. Salehi. Extremely Fast Decision Tree. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '18). ACM, New York, NY, USA, 1953-1962, 2018.
    from river import tree
    model = tree.ExtremelyFastDecisionTreeClassifier(
         grace_period=100,
         split_confidence=1e-5,
         min_samples_reevaluate=100,
         ...
     )
  • Adaptive random forest (ARF) algorithm uses HTs as base learners and ADWIN as the drift detector for each tree to address concept drift. Through the drift detection process, the poor-performing base trees are replaced by new trees to fit the new concept.

    • Heitor Murilo Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabricio Enembreck, Bernhard Pfharinger, Geoff Holmes, Talel Abdessalem. Adaptive random forests for evolving data stream classification. In Machine Learning, DOI: 10.1007/s10994-017-5642-8, Springer, 2017.
    from river import ensemble
    model = ensemble.AdaptiveRandomForestClassifier(
         n_models=3,
         drift_detector=ADWIN(),
         ...
     )
  • Streaming Random Patches (SRP) uses the similar technology of ARF, but it uses the global subspace randomization strategy, instead of the local subspace randomization technique used by ARF. The global subspace randomization is a more flexible method that improves the diversity of base learners.

    • Heitor Murilo Gomes, Jesse Read, Albert Bifet. Streaming Random Patches for Evolving Data Stream Classification. IEEE International Conference on Data Mining (ICDM), 2019.
    from river import ensemble
    base_model = tree.HoeffdingTreeClassifier(
       grace_period=50, split_confidence=0.01,
       ...
     )
    model = ensemble.SRPClassifier(
       model=base_model, n_models=3, drift_detector=ADWIN(),
       ...
    )
  • Leverage bagging (LB) is another popular online ensemble that uses bootstrap samples to construct base learners. It uses Poisson distribution to increase the data diversity and leverage the bagging performance.

    • Bifet A., Holmes G., Pfahringer B. (2010) Leveraging Bagging for Evolving Data Streams. In: Balcázar J.L., Bonchi F., Gionis A., Sebag M. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2010. Lecture Notes in Computer Science, vol 6321. Springer, Berlin, Heidelberg.
    from river import ensemble
    from river import linear_model
    from river import preprocessing
    model = ensemble.LeveragingBaggingClassifier(
       model=(
           preprocessing.StandardScaler() |
           linear_model.LogisticRegression()
       ),
       n_models=3,
       ...
    )

Abstract of The Paper

As the number of Internet of Things (IoT) devices and systems have surged, IoT data analytics techniques have been developed to detect malicious cyber-attacks and secure IoT systems; however, concept drift issues often occur in IoT data analytics, as IoT data is often dynamic data streams that change over time, causing model degradation and attack detection failure. This is because traditional data analytics models are static models that cannot adapt to data distribution changes. In this paper, we propose a Performance Weighted Probability Averaging Ensemble (PWPAE) framework for drift adaptive IoT anomaly detection through IoT data stream analytics. Experiments on two public datasets show the effectiveness of our proposed PWPAE method compared against state-of-the-art methods.

Implementation

Online Learning/Concept Drift Adaptation Algorithms

  • Adaptive Random Forest (ARF)
  • Streaming Random Patches (SRP)
  • Extremely Fast Decision Tree (EFDT)
  • Hoeffding Tree (HT)
  • Leveraging Bagging (LB)
  • Performance Weighted Probability Averaging Ensemble (PWPAE)
    • Proposed Method

Drift Detection Algorithms

  • Adaptive Windowing (ADWIN)
  • Drift Detection Method (DDM)

Dataset

  1. IoTID20 dataset, a novel IoT botnet dataset

  2. CICIDS2017 dataset, a popular network traffic dataset for intrusion detection problems

For the purpose of displaying the experimental results in Jupyter Notebook, the sampled subsets of the two datasets are used in the sample code. The subsets are in the "data" folder.

Code

Requirements & Libraries

Contact-Info

Please feel free to contact us for any questions or cooperation opportunities. We will be happy to help.

Citation

If you find this repository useful in your research, please cite this article as:

L. Yang, D. M. Manias, and A. Shami, “PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data Streams,” in 2021 IEEE Glob. Commun. Conf. (GLOBECOM), Madrid, Spain, Dec. 2021.

@INPROCEEDINGS{9685338,
  author={Yang, Li and Manias, Dimitrios Michael and Shami, Abdallah},
  booktitle={2021 IEEE Global Communications Conference (GLOBECOM)}, 
  title={PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data Streams}, 
  year={2021},
  pages={1-6},
  doi={10.1109/GLOBECOM46510.2021.9685338}
  }
Owner
Western OC2 Lab
The Optimized Computing and Communications (OC2) Laboratory within the Department of Electrical and Computer Engineering at Western University, London, Canada.
Western OC2 Lab
UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering

UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering This repository holds all the code and data for our recent work on

Mohamed El Banani 118 Dec 06, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
YuNetのPythonでのONNX、TensorFlow-Lite推論サンプル

YuNet-ONNX-TFLite-Sample YuNetのPythonでのONNX、TensorFlow-Lite推論サンプルです。 TensorFlow-LiteモデルはPINTO0309/PINTO_model_zoo/144_YuNetのものを使用しています。 Requirement Op

KazuhitoTakahashi 8 Nov 17, 2021
ColossalAI-Benchmark - Performance benchmarking with ColossalAI

Benchmark for Tuning Accuracy and Efficiency Overview The benchmark includes our

HPC-AI Tech 31 Oct 07, 2022
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022
Language model Prompt And Query Archive

LPAQA: Language model Prompt And Query Archive This repository contains data and code for the paper How Can We Know What Language Models Know? Install

127 Dec 20, 2022
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 02, 2022
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
BBScan py3 - BBScan py3 With Python

BBScan_py3 This repository is forked from lijiejie/BBScan 1.5. I migrated the fo

baiyunfei 12 Dec 30, 2022
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2

Andrés Romero 37 Nov 27, 2022
Annotate with anyone, anywhere.

h h is the web app that serves most of the https://hypothes.is/ website, including the web annotations API at https://hypothes.is/api/. The Hypothesis

Hypothesis 2.6k Jan 08, 2023
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022