Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Overview

Frequency Bias of Generative Models

Generator Testbed Discriminator Testbed

This repository contains official code for the paper On the Frequency Bias of Generative Models.

You can find detailed usage instructions for analyzing standard GAN-architectures and your own models below.

If you find our code or paper useful, please consider citing

@inproceedings{Schwarz2021NEURIPS,
  title = {On the Frequency Bias of Generative Models},
  author = {Schwarz, Katja and Liao, Yiyi and Geiger, Andreas},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year = {2021}
}

Installation

Please note, that this repo requires one GPU for running. First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called fbias using

conda env create -f environment.yml
conda activate fbias

Generator Testbed

You can run a demo of our generator testbed via:

chmod +x ./scripts/demo_generator_testbed.sh
./scripts/demo_generator_testbed.sh

This will train the Generator of Progressive Growing GAN to regress a single image. Further, the training progression on the image regression, spectrum, and spectrum error are summarized in output/generator_testbed/baboon64/pggan/eval.

In general, to analyze the spectral properties of a generator architecture you can train a model by running

python generator_testbed.py *EXPERIMENT_NAME* *PATH/TO/CONFIG*

This script should create a folder output/generator_testbed/*EXPERIMENT_NAME* where you can find the training progress. To evaluate the spectral properties of the trained model run

python eval_generator.py *EXPERIMENT_NAME* --psnr --image-evolution --spectrum-evolution --spectrum-error-evolution

This will print the average PSNR of the regressed images and visualize image evolution, spectrum evolution, and spectrum error evolution in output/generator_testbed/*EXPERIMENT_NAME*/eval.

Discriminator Testbed

You can run a demo of our discriminator testbed via:

chmod +x ./scripts/demo_discriminator_testbed.sh
./scripts/demo_discriminator_testbed.sh

This will train the Discriminator of Progressive Growing GAN to regress a single image. Further, the training progression on the image regression, spectrum, and spectrum error are summarized in output/discriminator_testbed/baboon64/pggan/eval.

In general, to analyze the spectral properties of a discriminator architecture you can train a model by running

python discriminator_testbed.py *EXPERIMENT_NAME* *PATH/TO/CONFIG*

This script should create a folder output/discriminator_testbed/*EXPERIMENT_NAME* where you can find the training progress. To evaluate the spectral properties of the trained model run

python eval_discriminator.py *EXPERIMENT_NAME* --psnr --image-evolution --spectrum-evolution --spectrum-error-evolution

This will print the average PSNR of the regressed images and visualize image evolution, spectrum evolution, and spectrum error evolution in output/discriminator_testbed/*EXPERIMENT_NAME*/eval.

Datasets

Toyset

You can generate a toy dataset with Gaussian peaks as spectrum by running

cd data
python toyset.py 64 100
cd ..

This creates a folder data/toyset/ and generates 100 images of resolution 64x64 pixels.

CelebA-HQ

Download celebA_hq. Then, update data:root: *PATH/TO/CELEBA_HQ* in the config file.

Other datasets

The config setting data:root: *PATH/TO/DATA* needs to point to a folder with the training images. You can use any dataset which follows the folder structure

*PATH/TO/DATA*/xxx.png
*PATH/TO/DATA*/xxy.png
...

By default, the images are center-cropped and optionally resized to the resolution specified in the config file underdata:resolution. Note, that you can also use a subset of images via data:subset.

Architectures

StyleGAN Support

In addition to Progressive Growing GAN, this repository supports analyzing the following architectures

For this, you need to initialize the stylegan3 submodule by running

git pull --recurse-submodules
cd models/stylegan3/stylegan3
git submodule init
git submodule update
cd ../../../

Next, you need to install any additional requirements for this repo. You can do this by running

conda activate fbias
conda env update --file environment_sg3.yml --prune

You can now analyze the spectral properties of the StyleGAN architectures by running

# StyleGAN2
python generator_testbed.py baboon64/StyleGAN2 configs/generator_testbed/sg2.yaml
python discriminator_testbed.py baboon64/StyleGAN2 configs/discriminator_testbed/sg2.yaml
# StyleGAN3
python generator_testbed.py baboon64/StyleGAN3 configs/generator_testbed/sg3.yaml

Other architectures

To analyze any other network architectures, you can add the respective model file (or submodule) under models. You then need to write a wrapper class to integrate the architecture seamlessly into this code base. Examples for wrapper classes are given in

  • models/stylegan2_generator.py for the Generator
  • models/stylegan2_discriminator.py for the Discriminator

Further Information

This repository builds on Lars Mescheder's awesome framework for GAN training. Further, we utilize code from the Stylegan3-repo and GenForce.

PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features

PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features Overview This repository is the Pytorch implementation of PRIN/SPRIN: On Extracting P

Yang You 17 Mar 02, 2022
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks

Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app

4 Sep 11, 2022
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

Bhchen 69 Dec 08, 2022
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022
一个多模态内容理解算法框架,其中包含数据处理、预训练模型、常见模型以及模型加速等模块。

Overview 架构设计 插件介绍 安装使用 框架简介 方便使用,支持多模态,多任务的统一训练框架 能力列表: bert + 分类任务 自定义任务训练(插件注册) 框架设计 框架采用分层的思想组织模型训练流程。 DATA 层负责读取用户数据,根据 field 管理数据。 Parser 层负责转换原

Tencent 265 Dec 22, 2022
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

CV Newbie 28 Dec 13, 2022
InterfaceGAN++: Exploring the limits of InterfaceGAN

InterfaceGAN++: Exploring the limits of InterfaceGAN Authors: Apavou Clément & Belkada Younes From left to right - Images generated using styleGAN and

Younes Belkada 42 Dec 23, 2022
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
Deep-Learning-Image-Captioning - Implementing convolutional and recurrent neural networks in Keras to generate sentence descriptions of images

Deep Learning - Image Captioning with Convolutional and Recurrent Neural Nets ========================================================================

23 Apr 06, 2022
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023
Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective

Unofficial pytorch implementation of the paper "Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective"

16 Nov 21, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Dec 29, 2022
Akshat Surolia 2 May 11, 2022
A python module for configuration of block devices

Blivet is a python module for system storage configuration. CI status Licence See COPYING Installation From Fedora repositories Blivet is available in

78 Dec 14, 2022
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022