This repository contains the code for the ICCV 2019 paper "Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics"

Overview

Occupancy Flow

This repository contains the code for the project Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics.

You can find detailed usage instructions for training your own models and using pre-trained models below.

If you find our code or paper useful, please consider citing

@inproceedings{OccupancyFlow,
    title = {Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics},
    author = {Niemeyer, Michael and Mescheder, Lars and Oechsle, Michael and Geiger, Andreas},
    booktitle = {Proc. of the IEEE International Conf. on Computer Vision (ICCV)},
    year = {2019}
}

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create and activate an anaconda environment called oflow using

conda env create -f environment.yaml
conda activate oflow

Next, compile the extension modules. You can do this via

python setup.py build_ext --inplace

Demo

You can test our code on the provided input point cloud sequences in the demo/ folder. To this end, simple run

python generate.py configs/demo.yaml

This script should create a folder out/demo/ where the output is stored.

Dataset

Point-based Data

To train a new model from scratch, you have to download the full dataset. You can download the pre-processed data (~42 GB) using

bash scripts/download_data.sh

The script will download the point-based point-based data for the Dynamic FAUST (D-FAUST) dataset to the data/ folder.

Please note: We do not provide the renderings for the 4D reconstruction from image sequences experiment nor the meshes for the interpolation and generative tasks due to privacy regulations. We outline how you can download the mesh data in the following.

Mesh Data

Please follow the instructions on D-FAUST homepage to download the "female and male registrations" as well as "scripts to load / parse the data". Next, follow their instructions in the scripts/README.txt file to extract the obj-files of the sequences. Once completed, you should have a folder with the following structure:


your_dfaust_folder/
| 50002_chicken_wings/
    | 00000.obj
    | 00001.obj
    | ...
    | 000215.obj
| 50002_hips/
    | 00000.obj
    | ...
| ...
| 50027_shake_shoulders/
    | 00000.obj
    | ...


You can now run

bash scripts/migrate_dfaust.sh path/to/your_dfaust_folder

to copy the mesh data to the dataset folder. The argument has to be the folder to which you have extracted the mesh data (the your_dfaust_folder from the directory tree above).

Usage

When you have installed all dependencies and obtained the preprocessed data, you are ready to run our pre-trained models and train new models from scratch.

Generation

To start the normal mesh generation process using a trained model, use

python generate.py configs/CONFIG.yaml

where you replace CONFIG.yaml with the name of the configuration file you want to use.

The easiest way is to use a pretrained model. You can do this by using one of the config files

configs/pointcloud/oflow_w_correspond_pretrained.yaml
configs/interpolation/oflow_pretrained.yaml
configs/generative/oflow_pretrained.yaml

Our script will automatically download the model checkpoints and run the generation. You can find the outputs in the out/ folder.

Please note that the config files *_pretrained.yaml are only for generation, not for training new models: when these configs are used for training, the model will be trained from scratch, but during inference our code will still use the pretrained model.

Generation - Generative Tasks

For model-specific latent space interpolations and motion transfers, you first have to run

python encode_latent_motion_space.py config/generative/CONFIG.yaml

Next, you can call

python generate_latent_space_interpolation.py config/generative/CONFIG.yaml

or

python generate_motion_transfer.py config/generative/CONFIG.yaml

Please note: Make sure that you use the appropriate model for the generation processes, e.g. the latent space interpolations and motion transfers can only be generated with a generative model (e.g. configs/generative/oflow_pretrained.yaml).

Evaluation

You can evaluate the generated output of a model on the test set using

python eval.py configs/CONFIG.yaml

The evaluation results will be saved to pickle and csv files.

Training

Finally, to train a new network from scratch, run

python train.py configs/CONFIG.yaml

You can monitor the training process on http://localhost:6006 using tensorboard:

cd OUTPUT_DIR
tensorboard --logdir ./logs --port 6006

where you replace OUTPUT_DIR with the respective output directory. For available training options, please have a look at config/default.yaml.

Further Information

Implicit Representations

If you like the Occupancy Flow project, please check out our similar projects on inferring 3D shapes (Occupancy Networks) and texture (Texture Fields).

Neural Ordinary Differential Equations

If you enjoyed our approach using differential equations, checkout Ricky Chen et. al.'s awesome implementation of differentiable ODE solvers which we used in our project.

Dynamic FAUST Dataset

We applied our method to the cool Dynamic FAUST dataset which contains sequences of real humans performing various actions.

Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
BARTScore: Evaluating Generated Text as Text Generation

This is the Repo for the paper: BARTScore: Evaluating Generated Text as Text Generation Updates 2021.06.28 Release online evaluation Demo 2021.06.25 R

NeuLab 196 Dec 17, 2022
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running

Teddy Koker 15 Sep 29, 2022
Notepy is a full-featured Notepad Python app

Notepy A full featured python text-editor Notable features Autocompletion for parenthesis and quote Auto identation Syntax highlighting Compile and ru

Mirko Rovere 11 Sep 28, 2022
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023
torchlm is aims to build a high level pipeline for face landmarks detection, it supports training, evaluating, exporting, inference(Python/C++) and 100+ data augmentations

💎A high level pipeline for face landmarks detection, supports training, evaluating, exporting, inference and 100+ data augmentations, compatible with torchvision and albumentations, can easily instal

DefTruth 142 Dec 25, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
Real-time 3D multi-person detection made easy with OpenPose and the ZED

OpenPose ZED This sample show how to simply use the ZED with OpenPose, the deep learning framework that detects the skeleton from a single 2D image. T

blanktec 5 Nov 06, 2020
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
Fit Fast, Explain Fast

FastExplain Fit Fast, Explain Fast Installing pip install fast-explain About FastExplain FastExplain provides an out-of-the-box tool for analysts to

8 Dec 15, 2022
Mengzi Pretrained Models

中文 | English Mengzi 尽管预训练语言模型在 NLP 的各个领域里得到了广泛的应用,但是其高昂的时间和算力成本依然是一个亟需解决的问题。这要求我们在一定的算力约束下,研发出各项指标更优的模型。 我们的目标不是追求更大的模型规模,而是轻量级但更强大,同时对部署和工业落地更友好的模型。

Langboat 424 Jan 04, 2023
Free course that takes you from zero to Reinforcement Learning PRO 🦸🏻‍🦸🏽

The Hands-on Reinforcement Learning course 🚀 From zero to HERO 🦸🏻‍🦸🏽 Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Yu-Huan Wu 41 Oct 21, 2022