Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Overview

Myo Keylogging

This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Gazzari, Annemarie Mattmann, Max Maass and Matthias Hollick in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Volume 5, Issue 4, 2021.

We include the software used for recording the dataset (record folder) and the software for training and running the neural networks (ml folder) as well as analyzing the results (analysis folder). The scripts folder provides some helper scripts for automating batches of hyperparameter optimization, model fitting, analyses and more. The results folder includes a pickled version of the predictions of our models, on which analyses can be run, e.g. to reproduce the paper results.

Installation

To install the project, first clone the repository and change directory into the fresh clone:

git clone https://github.com/seemoo-lab/myo-keylogging.git
cd myo-keylogging

You can use a python virtual environment (or any other virtual environment of your choice):

mkvirtualenv myo --system-site-packages
workon myo

To make sure you have the newest software versions you can run an upgrade:

pip install --upgrade pip setuptools

To install the requirements run:

pip install -r requirements.txt

Finally, import the training and test data into the project. The top level folder should include a folder train-data with all the records for training the models and a folder test-data with all the records for testing the models.

wget https://zenodo.org/record/5594651/files/myo-keylogging-dataset.zip
unzip myo-keylogging-dataset.zip

Using the record library, you can add you can extend this dataset.

Rerun of Results

To reproduce our results from the provided predictions of our models, go to the top level directory and run:

./scripts/create_results.sh

This will recreate all performance value files and plots in the subfolders of the results folder as used in the paper.

Run the following to list the fastest and slowest typists in order to determine their class imbalance in the results/train-data-skew.csv and the results/test-data-skew.csv files:

python -m analysis exp_key_data

To recreate the provided predictions and class skew files, execute the following from the top level directory:

./scripts/create_models.sh
./scripts/create_predictions.sh
./scripts/create_class_skew_files.sh

This will fit the models with the current choice of hyperparameters and run each model on the test dataset to create the required predictions for analysis. Additionally, the class skew files will be recreated.

To run the hyperparameter optimization either run the run_shallow_hpo.sh script or, alternatively, the slurm_run_shallow_hpo.sh script when on a SLURM cluster.

sbatch scripts/slurm_run_shallow_hpo.sh
./scripts/run_shallow_hpo.sh

Afterwards you can use the merge_shallow_hpo_runs.py script to combine the results for easier evaluation of the hyperparameters.

Fit Models

In order to fit and analyze your own models, go to the top level directory and run any of:

python -m ml crnn
python -m ml resnet
python -m ml resnet11
python -m ml wavenet

This will fit the respective model with the default parameters and in binary mode for keystroke detection. In order to fit multiclass models for keystroke identification, use the encoding parameter, e.g.:

python -m ml crnn --encoding "multiclass"

In order to test specific sensors, ignore the others (note that quaternions are ignored by default), e.g. to use only EMG on a CRNN model, use:

python -m ml crnn --ignore "quat" "acc" "gyro"

To run a hyperparameter optimization, run e.g.:

python -m ml crnn --func shallow_hpo --step 5

To gain more information on possible parameters, run e.g.:

python -m ml crnn --help

Some parameters for the neural networks are fixed in the code.

Analyze Models

In order to analyze your models, run apply_models to create the predictions as pickled files. On these you can run further analyses found in the analysis folder.

To run apply_models on a binary model, do:

python -m analysis apply_models --model_path results/<PATH_TO_MODEL> --encoding binary --data_path test-data/ --save_path results/<PATH_TO_PKL> --save_only --basenames <YOUR MODELS>

To run a multiclass model, do:

python -m analysis apply_models --model_path results/<PATH_TO_MODEL> --encoding multiclass --data_path test-data/ --save_path results/<PATH_TO_PKL> --save_only --basenames <YOUR MODELS>

To chain a binary and multiclass model, do e.g.:

python -m analysis apply_models --model_path results/<PATH_TO_MODEL> --encoding chain --data_path test-data/ --save_path results/<PATH_TO_PKL> --save_only --basenames <YOUR MODELS> --tolerance 10

Further parameters interesting for analyses may be a filter on the users with the parameter (--users known or --users unknown) or on the data (--data known or --data unknown) to include only users (not) in the training data or include only data typed by all or no other user respectively.

For more information, run:

python -m analysis apply_models --help

To later recreate model performance results and plots, run:

python -m analysis apply_models --encoding <ENCODING> --load_results results/<PATH_TO_PKL> --save_path results/<PATH_TO_PKL> --save_only

with the appropriate encoding of the model used to create the pickled results.

To run further analyses on the generated predictions, create or choose your analysis from the analysis folder and run:

python -m analysis <ANALYSIS_NAME>

Refer to the help for further information:

python -m analysis <ANALYSIS_NAME> --help

Record Data

In order to record your own data(set), switch to the record folder. To record sensor data with our recording software, you will need one to two Myo armbands connected to your computer. Then, you can start a training data recording, e.g.:

python tasks.py -s 42 -l german record touch_typing --left_tty <TTY_LEFT_MYO> --left_mac <MAC_LEFT_MYO> --right_tty <TTY_RIGHT_MYO> --right_mac <MAC_RIGHT_MYO> --kb_model TADA68_DE

for a German recording with seed 42, a touch typist and a TADA68 German physical keyboard layout or

python tasks.py -s 42 -l english record touch_typing --left_tty <TTY_LEFT_MYO> --left_mac <MAC_LEFT_MYO> --right_tty <TTY_RIGHT_MYO> --right_mac <MAC_RIGHT_MYO> --kb_model TADA68_US

for an English recording with seed 42, a hybrid typist and a TADA68 English physical keyboard layout.

In order to start a test data recording, simply run the passwords.py instead of the tasks.py.

After recording training data, please execute the following script to complete the meta data:

python update_text_meta.py -p ../train-data/

After recording test data, please execute the following two scripts to complete the meta data:

python update_pw_meta.py -p ../test-data/
python update_cuts.py -p ../test-data/

For further information, check:

python tasks.py --help
python passwords.py --help

Note that the recording software includes text extracts as outlined in the acknowledgments below.

Links

Acknowledgments

This work includes the following external materials to be found in the record folder:

  1. Various texts from Wikipedia available under the CC-BY-SA 3.0 license.
  2. The EFF's New Wordlists for Random Passphrases available under the CC-BY 3.0 license.
  3. An extract of the Top 1000 most common passwords by Daniel Miessler, Jason Haddix, and g0tmi1k available under the MIT license.

License

This software is licensed under the GPLv3 license, please also refer to the LICENSE file.

Owner
Secure Mobile Networking Lab
Secure Mobile Networking Lab
CRNN With PyTorch

CRNN-PyTorch Implementation of https://arxiv.org/abs/1507.05717

Vadim 4 Sep 01, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022
adversarial_multi_armed_bandit_variable_plays

Adversarial Multi-Armed Bandit with Variable Plays This code is for paper: Adversarial Online Learning with Variable Plays in the Evasion-and-Pursuit

Yiyang Wang 1 Oct 28, 2021
Export CenterPoint PonintPillars ONNX Model For TensorRT

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I impleme

CarkusL 149 Dec 13, 2022
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022
上海交通大学全自动抢课脚本,支持准点开抢与抢课后持续捡漏两种模式。2021/06/08更新。

Welcome to Course-Bullying-in-SJTU-v3.1! 2021/6/8 紧急更新v3.1 更新说明 为了更好地保护用户隐私,将原来用户名+密码的登录方式改为微信扫二维码+cookie登录方式,不再需要配置使用pytesseract。在使用扫码登录模式时,请稍等,二维码将马

87 Sep 13, 2022
Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

TianYuan 27 Nov 07, 2022
Pull sensitive data from users on windows including discord tokens and chrome data.

⭐ For a 🍪 Pegasus Pull sensitive data from users on windows including discord tokens and chrome data. Features 🟩 Discord tokens 🟩 Geolocation data

Addi 44 Dec 31, 2022
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
FCOS: Fully Convolutional One-Stage Object Detection (ICCV'19)

FCOS: Fully Convolutional One-Stage Object Detection This project hosts the code for implementing the FCOS algorithm for object detection, as presente

Tian Zhi 3.1k Jan 05, 2023
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs

PhyCRNet Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs Paper link: [ArXiv] By: Pu Ren, Chengping Rao, Yang

Pu Ren 11 Aug 23, 2022
(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML

54 Aug 04, 2022