Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Related tags

Deep LearningHGNet
Overview

Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Results

We apply three KGQA benchmarks to evaluate our approach, ComplexWebQuestions (Talmor and Berant, 2018), LC-QuAD (Trivedi et al., 2017), and WebQSP (Yih et al., 2016).

Dataset Structure Acc. Query Graph Acc. Precision Recall F1-score [email protected]
ComplexWebQuestions 66.96 51.68 65.27 68.44 64.95 65.25
LC-QuAD 78.00 60.90 75.82 75.22 75.10 76.00
WebQSP 79.91 62.63 70.22 74.38 70.61 70.37

Requirements

  • Python == 3.7.0
  • cudatoolkit == 10.1.243
  • cudnn == 7.6.5
  • six == 1.15.0
  • torch == 1.4.0
  • transformers == 4.9.2
  • numpy == 1.19.2
  • SPARQLWrapper == 1.8.5
  • rouge_score == 0.0.4
  • filelock == 3.0.12
  • nltk == 3.6.2
  • absl == 0.0
  • dataclasses == 0.6
  • datasets == 1.9.0
  • jsonlines == 2.0.0
  • python_Levenshtein == 0.12.2
  • Virtuoso SPARQL query service

Data

  • Download and unzip our preprocessed data to ./, you can also running our scripts under ./preprocess to obtain them again.

  • Download our used Freebase and DBpedia. Both of them only contain English triples by removing other languages. Download and install Virtuoso to conduct the SPARQL query service for the downloaded Freebase and DBpedia. Here is a tutorial on how to install Virtuoso and import the knowledge graph into it.

  • Download GloVe Embedding glove.42B.300d.txt and put it to your_glove_path.

  • Download our vocabulary from here. Unzip and put it under ./. It contains our used SPARQL cache for Execution-Guided strategy.

Running Code

1. Training for HGNet

Before training, first set the following hyperparameter in train_cwq.sh, train_lcq.sh, and train_wsp.sh.

--glove_path your_glove_path

Execute the following command for training model on ComplexWebQuestions.

sh train_cwq.sh

Execute the following command for training model on LC-QuAD.

sh train_lcq.sh

Execute the following command for training model on WebQSP.

sh train_wsp.sh

The trained model file is saved under ./runs directory.
The path format of the trained model is ./runs/RUN_ID/checkpoints/best_snapshot_epoch_xx_best_val_acc_xx_model.pt.

2. Testing for HGNet

Before testing, need to train a model first and set the following hyperparameters in eval_cwq.sh, eval_lcq.sh, and eval_wsp.sh.

--cpt your_trained_model_path
--kb_endpoint your_sparql_service_ip

You can also directly download our trained models from here. Unzip and put it under ./.

Execute the following command for testing the model on ComplexWebQuestions.

sh eval_cwq.sh

Execute the following command for testing the model on LC-QuAD.

sh eval_lcq.sh

Execute the following command for testing the model on WebQSP.

sh eval_wsp.sh
Owner
Yongrui Chen
Yongrui Chen
Cascaded Pyramid Network (CPN) based on Keras (Tensorflow backend)

ML2 Takehome Project Reimplementing the paper: Cascaded Pyramid Network for Multi-Person Pose Estimation Dataset The model uses the COCO dataset which

Vo Van Tu 1 Nov 22, 2021
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
Do Neural Networks for Segmentation Understand Insideness?

This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),

biolins 0 Mar 20, 2021
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
TalkingHead-1KH is a talking-head dataset consisting of YouTube videos

TalkingHead-1KH Dataset TalkingHead-1KH is a talking-head dataset consisting of YouTube videos, originally created as a benchmark for face-vid2vid: On

173 Dec 29, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

52 Dec 23, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

Visual Intelligence Lab of UCSD 95 Jan 08, 2023
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Marcelo D. Polêto 10 Jul 17, 2022
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We

Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas 50 Dec 29, 2022
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
Pytorch implementation of FlowNet by Dosovitskiy et al.

FlowNetPytorch Pytorch implementation of FlowNet by Dosovitskiy et al. This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et

Clément Pinard 762 Jan 02, 2023
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022