Research on Tabular Deep Learning (Python package & papers)

Overview

Research on Tabular Deep Learning

For paper implementations, see the section "Papers and projects".

rtdl is a PyTorch-based package providing a user-friendly API for the main models and concepts from our papers. See the documentation.

Press "Watch" to stay up to date with new papers and releases!

Feel free to report issues and post questions/feedback/ideas.

Papers and projects

Name Location Comment
On Embeddings for Numerical Features in Tabular Deep Learning link arXiv 2022
Revisiting Deep Learning Models for Tabular Data link NeurIPS 2021
rtdl link Python package
Comments
  • Fix MLP.make_baseline() return type

    Fix MLP.make_baseline() return type

    Return object of type cls, not MLP, in MLP.make_baseline(). Otherwise, child classes inheriting from MLP constructed using the .make_baseline() method always have type MLP (instead of the type of the child class).

    opened by jpgard 6
  • Is it possible to provide a scikit-learn interface?

    Is it possible to provide a scikit-learn interface?

    This project is interesting and I want to use it as the baseline algorithm for my paper. However, it seems that I need to take several steps in order to make a prediction. Consequently, is it possible to provide a scikit-learn interface for making a convenient comparison between different algorithms?

    opened by hengzhe-zhang 5
  • Cannot link in the document of zero

    Cannot link in the document of zero

    Hi! I am trying to understand the usage of python package zero, which is used in the example of rtdl. But I found that the linkage in the comment line of the code is not available anymore.

    Here is the invalid link: https://yura52.github.io/zero/0.0.4/reference/api/zero.improve_reproducibility.html

    I am wondering is there any other document? Thank you!

    Regards.

    opened by WuZheng326 4
  • embedding of categorical variables

    embedding of categorical variables

    Hi Yury,

    Thank you for your excellent work. I get a problem when handling categorical features. Do I need to pre-train the embedding layer when applying it to the data processing or just to attach the embedding layer to the model and train it with the model.

    opened by lhq12 3
  • Add ⭐️Weights & Biases⭐️ Logging

    Add ⭐️Weights & Biases⭐️ Logging

    This PR aims to add basic Weights and Biases Metric Logging by appending to the existing codebase with minimal changes while supporting Checkpoint uploads as Weights and Biases Artifacts.

    Wherever needed, I have used the existing Weights and Biases integrations viz. LightGBM and XGBoost.

    I have validated the performance of all the proposed runs by running 150+ runs, which can be viewed on this project page and in detail in an accompanying blog post.

    opened by SauravMaheshkar 3
  • Bugs in piecewise-linear encoding

    Bugs in piecewise-linear encoding

    1. Here, indices = as_tensor(values) must be changed to this:
    indices = as_tensor(indices)
    
    1. Here, np.array(d_encoding) must be changed to this:
    torch.tensor(d_encoding).to(indices)
    
    1. Here, the argument dtype=X.dtype is missing for np.array

    2. Here, .to(X) is missing

    3. Here, it must be:

    is_last_bin = bin_indices + 1 == as_tensor(list(map(len, bin_edges)))
    
    opened by Yura52 2
  • LGBMRegressor on California Housing dataset is 0.68 >> 0.46

    LGBMRegressor on California Housing dataset is 0.68 >> 0.46

    I use the sample code to prepare the dataset:

    device = 'cpu'
    dataset = sklearn.datasets.fetch_california_housing()
    task_type = 'regression'
    
    X_all = dataset['data'].astype('float32')
    y_all = dataset['target'].astype('float32')
    n_classes = None
    
    X = {}
    y = {}
    X['train'], X['test'], y['train'], y['test'] = sklearn.model_selection.train_test_split(
        X_all, y_all, train_size=0.8
    )
    X['train'], X['val'], y['train'], y['val'] = sklearn.model_selection.train_test_split(
        X['train'], y['train'], train_size=0.8
    )
    
    # not the best way to preprocess features, but enough for the demonstration
    preprocess = sklearn.preprocessing.StandardScaler().fit(X['train'])
    X = {
        k: torch.tensor(preprocess.fit_transform(v), device=device)
        for k, v in X.items()
    }
    y = {k: torch.tensor(v, device=device) for k, v in y.items()}
    
    # !!! CRUCIAL for neural networks when solving regression problems !!!
    y_mean = y['train'].mean().item()
    y_std = y['train'].std().item()
    y = {k: (v - y_mean) / y_std for k, v in y.items()}
    
    y = {k: v.float() for k, v in y.items()}
    

    And I train a LGBMRegressor with the default hyper parameters:

    model = lgb.LGBMRegressor()
    model.fit(X['train'], y['train'])
    

    But when I evaluate on the test fold, I found the performance is 0.68:

    >>> test_pred = model.predict(X['test'])
    >>> test_pred = torch.from_numpy(test_pred)
    >>> rmse = torch.nn.functional.mse_loss(
    >>>     test_pred.view(-1), y['test'].view(-1)) ** 0.5 * y_std
    >>> print(f'Test RMSE: {rmse:.2f}.')
    Test RMSE: 0.68.
    

    Even using the model from rtdl gives me 0.56 RMSE:

    (epoch) 57 (batch) 0 (loss) 0.1885
    (epoch) 57 (batch) 10 (loss) 0.1315
    (epoch) 57 (batch) 20 (loss) 0.1735
    (epoch) 57 (batch) 30 (loss) 0.1197
    (epoch) 57 (batch) 40 (loss) 0.1952
    (epoch) 57 (batch) 50 (loss) 0.1167
    Epoch 057 | Validation score: 0.7334 | Test score: 0.5612 <<< BEST VALIDATION EPOCH
    

    Is there anything I miss? How can I reproduce the performance in your paper? Thanks!

    opened by fingertap 2
  • Regression results about the RTDL models.

    Regression results about the RTDL models.

    Hi, you did a great implementation of the tab-transformer. However, when I use your example notebook to do the simple regression for the Sin(x), neither the baseline model or the FTTransformer give the good results. I have no idea about this and want to know why.

    Here is the link

    opened by linkedlist771 1
  • typos in CatEmbeddings

    typos in CatEmbeddings

    1. link. The variable cardinalities_and_dimensions does not exist
    2. link. The condition looks broken. Solution: simplify it and remove the word "spec" from the error message.
    opened by Yura52 0
  • Running error, prenormalization is not a class variable

    Running error, prenormalization is not a class variable

    The code crushes at this line, because prenormalization is not in self

    https://github.com/Yura52/rtdl/blob/b130dd2e596c17109bef825bc9c8608e1ae617cc/rtdl/nn/_backbones.py#L627

    opened by zahar-chikishev 0
  • Typos?

    Typos?

    Hello,

    I am trying to use PiecewiseLinearEncoder(). I think I found a few typos. Please check my work.

    I first ran into an issue in piecewise_linear_encoding where I got the error in line 618 saying "RuntimeError: The size of tensor a (3688) must match the size of tensor b (32) at non-singleton dimension 1"

    I dug into the code and found that when PiecewiseLinearEncoder was calling piecewise_linear_encoding the positional arguments of indices and ratios were switched in the former from what was expected in the latter.

    Additionally, when inspecting piecewise_linear_encoding it looks like bin_edges = as_tensor(bin_ratios) not "as_tensor(bin_edges)" which would make more sense.

    Can you please check this out? Much appreciated.

    opened by jdefriel 1
  • How to resume training?

    How to resume training?

    I ran your model in colab for a few hours before google terminated it. I used pickle.dump/load to store the trained model. It works to make predictions but it doesn't seem to be able to resume training.

          if progress.success:
              print(' <<< BEST VALIDATION EPOCH', end='')
              with open(mydrive+jobname, 'wb') as filehandler:
                dump((model, y_std, y_mean),filehandler)
                #we could see result was improving
    
            with open(mydrive+jobname, 'rb') as filehandler:
              model, y_std, y_mean = load(filehandler)
            pred=model(batch,None) #this seems to work
            for epoch in range(1, n_epochs + 1):
                for iteration, batch_idx in enumerate(train_loader):
                    model.train()
                    optimizer.zero_grad()
                    x_batch = X['train'][batch_idx]
                    y_batch = y['train'][batch_idx]
                    loss = loss_fn(apply_model(x_batch).squeeze(1), y_batch)
                    loss.backward()
                    optimizer.step()
                    if iteration % report_frequency == 0:
                        print(f'(epoch) {epoch} (batch) {iteration} (loss) {loss.item():.4f}')
                    #no improvement any more. even the model was dumped immediately after created.
    

    what is the right way to store the model so that I can resume the training?

    opened by jerronl 0
  • A scikit-learn interface for RTDL package.

    A scikit-learn interface for RTDL package.

    Hello! I have written a scikit-learn interface for the RTDL package (https://github.com/hengzhe-zhang/scikit-rtdl). I rely on the skorch to avoid coding errors, and set the default parameters based on the parameters presented in your paper. Hoping you will like it!

    opened by hengzhe-zhang 1
Releases(v0.0.13)
  • v0.0.13(Mar 16, 2022)

  • v0.0.12(Mar 10, 2022)

  • v0.0.10(Feb 28, 2022)

  • v0.0.9(Nov 7, 2021)

    This is a hot-fix release after the big 0.0.8 release (see the release notes for 0.0.8):

    • revert the breaking change in NumericalFeatureTokenizer accidentally introduced in 0.0.8
    • minor documentation refinements
    Source code(tar.gz)
    Source code(zip)
  • v0.0.8(Nov 6, 2021)

    This release focuses on improving the documentation.

    Documentation

    • The following models and classes are now documented:
      • MLP
      • ResNet
      • FTTransformer
      • MultiheadAttention
      • NumericalFeatureTokenizer
      • CategoricalFeatureTokenizer
      • FeatureTokenizer
      • CLSToken
    • Usability have been greatly improved:
      • signatures are now highlighted
      • added the "copy" button to code blocks
      • permalink buttons (signature anchors) are now visible

    Bug fixes

    • MultiheadAttention: fix the crash when bias=False

    Dependencies

    • numpy >= 1.18
    • torch >= 1.7

    Project

    • added spell checking for documentation
    • sphinx was updated to 4.2.0
    • flit was updated to 3.4.0
    Source code(tar.gz)
    Source code(zip)
  • v0.0.7(Oct 10, 2021)

  • v0.0.6(Aug 26, 2021)

    v0.0.6

    New features

    • CLSToken (old name: "AppendCLSToken"): add expand method for easy construction of batches of [CLS]-tokens

    Bug fixes

    • FTTransformer: the make_baseline method now properly constructs an instance

    API changes

    • FTTransformer: the ffn_d_intermidiate argument was renamed to a more conventional ffn_d_hidden
    • FTTransformer: the normalization argument was split into three arguments: attention_normalization, ffn_normalization, head_normalization
    • ResNet: the d_intermidiate argument was renamed to a more conventional d_hidden
    • AppendCLSToken: renamed to CLSToken

    Documentation improvements

    • CLSToken
    • MLP.make_baseline

    Project

    • add tests with CUDA
    • remove the .vscode directory from the repository
    Source code(tar.gz)
    Source code(zip)
  • v0.0.5(Jul 20, 2021)

    API Changes:

    • MLP.make_baseline is now more user-friendly and accepts a single d_layers argument instead of four (d_first, d_intermidiate, d_last, n_blocks)
    Source code(tar.gz)
    Source code(zip)
  • v0.0.4(Jul 11, 2021)

  • v0.0.3(Jul 2, 2021)

    API Changes

    • ResNet & ResNet.Block: the d parameter was renamed to d_main

    Fixes

    • minor fix in the comments in examples/rtdl.ipynb

    Project

    • add tests that validate that the models in rtdl are literally the same as in the implementation of the paper
    Source code(tar.gz)
    Source code(zip)
TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How TensorFlow implementation for Bayesian Modeling and Unce

Shen Lab at Texas A&M University 8 Sep 02, 2022
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
PaddlePaddle GAN library, including lots of interesting applications like First-Order motion transfer, wav2lip, picture repair, image editing, photo2cartoon, image style transfer, and so on.

English | 简体中文 PaddleGAN PaddleGAN provides developers with high-performance implementation of classic and SOTA Generative Adversarial Networks, and s

6.4k Jan 09, 2023
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures using receptive field analysis (RFA) and create graph visualizations of your architecture.

ReceptiveFieldAnalysisToolbox This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures usin

84 Nov 23, 2022
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
Platform-agnostic AI Framework 🔥

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework progra

TensorLayer Community 171 Jan 06, 2023
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
Implementation of the ICCV'21 paper Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases

Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases [Papers 1, 2][Project page] [Video] The implementation of the papers Temporal

56 Nov 21, 2022
A lightweight tool to get an AI Infrastructure Stack up in minutes not days.

K3ai will take care of setup K8s for You, deploy the AI tool of your choice and even run your code on it.

k3ai 105 Dec 04, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
Official PyTorch implementation of GDWCT (CVPR 2019, oral)

This repository provides the official code of GDWCT, and it is written in PyTorch. Paper Image-to-Image Translation via Group-wise Deep Whitening-and-

WonwoongCho 135 Dec 02, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022