Exploiting a Zoo of Checkpoints for Unseen Tasks

Overview

Exploiting a Zoo of Checkpoints for Unseen Tasks

                               

This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang, Qiang Qiu and Kenneth Church.

Dependencies

We used python 3.8.5, but other versions close to that should also work. Install all required packages by

pip install --upgrade pip
pip install -r requirements.txt

We used cuda 10.2.89, but any version that meets pytorch's requirement should also work.

Highlight of Results

We highlight some major results, so that readers do not have to read the paper to grasp the main ideas. Concisely, the paper tries to answer the question:

"Can we use a checkpoint zoo to build something that better adapts to unseen tasks?"

To answer the question, first we need to understand the geometry of a space of tasks.

Characterize the Task Space

In the paper, we model the tasks as following a Gaussian process. Its covariance is computed by applying kernel alignment to extracted features. The features are obtained by inputting probe data into checkpoints, each trained for a task. For example, using 34 checkpoints from Huggingface models, we can estimate the 34x34 covariance (of their corresponding tasks).

To reproduce the above figure, refer to LMs/README.md.

Exploit the Task Space

We hypothesize that representative tasks are more generalizable to new tasks. This, of course, needs a rigorious mathematical proof. But empirically we find it is true, as indicated by the experiments on NLP and vision tasks.

So, how to identify reprentative tasks? They are supposed to convey the most information about the rest of the task space. We formulate the problem into a Max-Mutual-Information (MMI) objective. The solver takes the covariance as input, and greedily picks reprentative tasks.

Linguistic Tasks

Using the 34x34 covariance matrix, we can identify that the 5 most representative tasks are those corresponding to roberta-base, distilbert-base-uncased, t5-base, bert-base-cased and bart-large. Combining these checkpoints yields superior results on 8 new linguistic tasks, e.g., below is an example of chunking task.

To reproduce full results, check LMs/README.md for details.

Computer Vision Tasks

The observation holds for vision tasks too. Below is an experiment set up on cifar100. MMI shows steady gain over random selection, and outperforms another baseline.

To reproduce all results, check vision/README.md for details.

Additional Comments

Note: This project requires running many small jobs. So it will be very useful if you have a cluster powered by slurm, which can launch jobs in parallel. In the job-launching scripts, you can see multiple commands like

sbatch -p $partition --gres=gpu:1 --wrap "python run.py" -o $job_log_path

If you do not have such a cluster, just use

python run.py > $job_log_path

instead.

Owner
Baidu Research
Baidu Research
Baidu Research
PyTorch implementation of ENet

PyTorch-ENet PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torc

David Silva 333 Dec 29, 2022
DrNAS: Dirichlet Neural Architecture Search

This paper proposes a novel differentiable architecture search method by formulating it into a distribution learning problem. We treat the continuously relaxed architecture mixing weight as random va

Xiangning Chen 37 Jan 03, 2023
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Thank you for you

Weirui Ye 671 Jan 03, 2023
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
DISTIL: Deep dIverSified inTeractIve Learning.

DISTIL: Deep dIverSified inTeractIve Learning. An active/inter-active learning library built on py-torch for reducing labeling costs.

decile-team 110 Dec 06, 2022
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)

Neuro-Symbolic Sudoku Solver PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please n

Ashutosh Hathidara 60 Dec 10, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Malik Boudiaf 138 Dec 12, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Zhiliang Peng 2.3k Jan 04, 2023
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
Application of the L2HMC algorithm to simulations in lattice QCD.

l2hmc-qcd 📊 Slides Recent talk on Training Topological Samplers for Lattice Gauge Theory from the Machine Learning for High Energy Physics, on and of

Sam Foreman 37 Dec 14, 2022
An example of time series augmentation methods with Keras

Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre

九州大学 ヒューマンインタフェース研究室 229 Jan 02, 2023
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Xueqi Hu 153 Dec 02, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Secure Distributed Training at Scale

Secure Distributed Training at Scale This repository contains the implementation of experiments from the paper "Secure Distributed Training at Scale"

Yandex Research 9 Jul 11, 2022