Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

Overview

taganomaly

Anomaly detection labeling tool, specifically for multiple time series (one time series per category).

Taganomaly is a tool for creating labeled data for anomaly detection models. It allows the labeler to select points on a time series, further inspect them by looking at the behavior of other times series at the same time range, or by looking at the raw data that created this time series (assuming that the time series is an aggregated metric, counting events per time range)

Note: This tool was built as a part of a customer engagement, and is not maintained on a regular basis.

Click here to deploy on Azure using Azure Container Instances: Deploy to Azure

Table of contents

Using the app

The app has four main windows:

The labeling window

UI

Time series labeling

Time series

Selected points table view

Selected points

View raw data for window if exists

Detailed data

Compare this category with others over time

Compare

Find proposed anomalies using the Twitter AnomalyDetection package

Reference results

Observe the changes in distribution between categories

This could be useful to understand whether an anomaly was univariate or multivariate Distribution comparison

How to run locally

using R

This tool uses the shiny framework for visualizing events. In order to run it, you need to have R and preferably Rstudio. Once you have everything installed, open the project (taganomaly.Rproj) on R studio and click Run App, or call runApp() from the console. You might need to manually install the required packages

Requirements

  • R (3.4.0 or above)

Used packages:

  • shiny
  • dplyr
  • gridExtra
  • shinydashboard
  • DT
  • ggplot2
  • shinythemes
  • AnomalyDetection

Using Docker

Pull the image from Dockerhub:

docker pull omri374/taganomaly

Run:

docker run --rm -p 3838:3838 omri374/taganomaly

How to deploy using docker

Deploy to Azure

Deploy to Azure Web App for Containers or Azure Container Instances. More details here (webapp) and here (container instances)

Pull the image manually

Deploy this image to your own environment.

Building from source

In order to build a new Docker image, run the following commands from the root folder of the project:

sudo docker build -t taganomaly .

If you added new packages to your modified TagAnomaly version, make sure to specify these in the Dockerfile.

Once the docker image is built, run it by calling

docker run -p 3838:3838 taganomaly

Which would result in the shiny server app running on port 3838.

Instructions of use

  1. Import time series CSV file. Assumed structure:
  • date ("%Y-%m-%d %H:%M:%S")
  • category
  • value
  1. (Optional) Import raw data time series CSV file. If the original time series is an aggreation over time windows, this time series is the raw values themselves. This way we could dive deeper into an anomalous value and see what it is comprised of. Assumed structure:
  • date ("%Y-%m-%d %H:%M:%S")
  • category
  • value
  1. Select category (if exists)

  2. Select time range on slider

  3. Inspect your time series: (1): click on one time range on the table below the plot to see raw data on this time range (2): Open the "All Categories" tab to see how other time series behave on the same time range.

4.Select points on plot that look anomalous.

  1. Click "Add selected points" to add the marked points to the candidate list.

  2. Once you decide that these are actual anomalies, save the resulting table to csv by clicking on "Download labels set" and continue to the next category.

Current limitations

Points added but not saved will be lost in case the date slider or categories are changed, hence it is difficult to save multiple points from a complex time series. Once all segments are labeled, one can run the provided prep_labels.py file in order to concatenate all of TagAnomaly's output file to one CSV.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
An open-source, low-cost, image-based weed detection device for fallow scenarios.

Welcome to the OpenWeedLocator (OWL) project, an opensource hardware and software green-on-brown weed detector that uses entirely off-the-shelf compon

Guy Coleman 145 Jan 05, 2023
Proof-Of-Concept Piano-Drums Music AI Model/Implementation

Rock Piano "When all is one and one is all, that's what it is to be a rock and not to roll." ---Led Zeppelin, "Stairway To Heaven" Proof-Of-Concept Pi

Alex 4 Nov 28, 2021
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022
PyTorch implementation of the TTC algorithm

Trust-the-Critics This repository is a PyTorch implementation of the TTC algorithm and the WGAN misalignment experiments presented in Trust the Critic

0 Nov 29, 2021
TensorFlow 101: Introduction to Deep Learning for Python Within TensorFlow

TensorFlow 101: Introduction to Deep Learning I have worked all my life in Machine Learning, and I've never seen one algorithm knock over its benchmar

Sefik Ilkin Serengil 896 Jan 04, 2023
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Python-for-Epidemiologists This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are

Paul Zivich 120 Nov 17, 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022