LaBERT - A length-controllable and non-autoregressive image captioning model.

Overview

Length-Controllable Image Captioning (ECCV2020)

This repo provides the implemetation of the paper Length-Controllable Image Captioning.

Install

conda create --name labert python=3.7
conda activate labert

conda install pytorch=1.3.1 torchvision cudatoolkit=10.1 -c pytorch
pip install h5py tqdm transformers==2.1.1
pip install git+https://github.com/salaniz/pycocoevalcap

Data & Pre-trained Models

  • Prepare MSCOCO data follow link.
  • Download pretrained Bert and Faster-RCNN from Baidu Cloud Disk [code: 0j9f] or Google Drive.
    • It's an unified checkpoint file, containing a pretrained Bert-base and the fc6 layer of the Faster-RCNN.
  • Download our pretrained LaBERT model from Baidu Cloud Disk [code: fpke] or Google Drive.

Scripts

Train

python -m torch.distributed.launch \
  --nproc_per_node=$NUM_GPUS \
  --master_port=4396 train.py \
  save_dir $PATH_TO_TRAIN_OUTPUT \
  samples_per_gpu $NUM_SAMPLES_PER_GPU

Continue train

python -m torch.distributed.launch \
  --nproc_per_node=$NUM_GPUS \
  --master_port=4396 train.py \
  save_dir $PATH_TO_TRAIN_OUTPUT \
  samples_per_gpu $NUM_SAMPLES_PER_GPU \
  model_path $PATH_TO_MODEL

Inference

python inference.py \
  model_path $PATH_TO_MODEL \
  save_dir $PATH_TO_TEST_OUTPUT \
  samples_per_gpu $NUM_SAMPLES_PER_GPU

Evaluate

python evaluate.py \
  --gt_caption data/id2captions_test.json \
  --pd_caption $PATH_TO_TEST_OUTPUT/caption_results.json \
  --save_dir $PATH_TO_TEST_OUTPUT

Cite

Please consider citing our paper in your publications if the project helps your research.

@article{deng2020length,
  title={Length-Controllable Image Captioning},
  author={Deng, Chaorui and Ding, Ning and Tan, Mingkui and Wu, Qi},
  journal={arXiv preprint arXiv:2007.09580},
  year={2020}
}
Owner
bearcatt
bearcatt
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates 🔥 🔥 🔥 Date Announcements 03/08/2021 🎆 🎆 We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022
Learning Continuous Image Representation with Local Implicit Image Function

LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo

Yinbo Chen 1k Dec 25, 2022
Group Fisher Pruning for Practical Network Compression(ICML2021)

Group Fisher Pruning for Practical Network Compression (ICML2021) By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang W

Shilong Zhang 129 Dec 13, 2022
This is the source code for the experiments related to the paper Unsupervised Audio Source Separation Using Differentiable Parametric Source Models

Unsupervised Audio Source Separation Using Differentiable Parametric Source Models This is the source code for the experiments related to the paper Un

30 Oct 19, 2022
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.

MaskCycleGAN-VC Unofficial PyTorch implementation of Kaneko et al.'s MaskCycleGAN-VC (2021) for non-parallel voice conversion. MaskCycleGAN-VC is the

86 Dec 25, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch]

Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch] Abstract Snapshot compressive imaging (SCI) can rec

integirty 6 Nov 01, 2022
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
Process text, including tokenizing and representing sentences as vectors and Applying some concepts like RNN, LSTM and GRU to create a classifier can detect the language in which a sentence is written from among 17 languages.

Language Identifier What is this ? The goal of this project is to create a model that is able to predict a given sentence language through text proces

Hossam Asaad 9 Dec 15, 2022
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 03, 2023
Image Super-Resolution Using Very Deep Residual Channel Attention Networks

Image Super-Resolution Using Very Deep Residual Channel Attention Networks

kongdebug 14 Oct 14, 2022
Python-based Informatics Kit for Analysing Chemical Units

INSTALLATION Python-based Informatics Kit for the Analysis of Chemical Units Step 1: Make a conda environment: conda create -n pikachu python=3.9 cond

47 Dec 23, 2022
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022