You Only Look Once for Panopitic Driving Perception

Overview

You Only 👀 Once for Panoptic ​ 🚗 Perception

You Only Look at Once for Panoptic driving Perception

by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wang 📧 School of EIC, HUST

( 📧 ) corresponding author.

arXiv technical report (arXiv 2108.11250)


中文文档

The Illustration of YOLOP

yolop

Contributions

  • We put forward an efficient multi-task network that can jointly handle three crucial tasks in autonomous driving: object detection, drivable area segmentation and lane detection to save computational costs, reduce inference time as well as improve the performance of each task. Our work is the first to reach real-time on embedded devices while maintaining state-of-the-art level performance on the BDD100K dataset.

  • We design the ablative experiments to verify the effectiveness of our multi-tasking scheme. It is proved that the three tasks can be learned jointly without tedious alternating optimization.

Results

PWC

Traffic Object Detection Result

Model Recall(%) mAP50(%) Speed(fps)
Multinet 81.3 60.2 8.6
DLT-Net 89.4 68.4 9.3
Faster R-CNN 77.2 55.6 5.3
YOLOv5s 86.8 77.2 82
YOLOP(ours) 89.2 76.5 41

Drivable Area Segmentation Result

Model mIOU(%) Speed(fps)
Multinet 71.6 8.6
DLT-Net 71.3 9.3
PSPNet 89.6 11.1
YOLOP(ours) 91.5 41

Lane Detection Result:

Model mIOU(%) IOU(%)
ENet 34.12 14.64
SCNN 35.79 15.84
ENet-SAD 36.56 16.02
YOLOP(ours) 70.50 26.20

Ablation Studies 1: End-to-end v.s. Step-by-step:

Training_method Recall(%) AP(%) mIoU(%) Accuracy(%) IoU(%)
ES-W 87.0 75.3 90.4 66.8 26.2
ED-W 87.3 76.0 91.6 71.2 26.1
ES-D-W 87.0 75.1 91.7 68.6 27.0
ED-S-W 87.5 76.1 91.6 68.0 26.8
End-to-end 89.2 76.5 91.5 70.5 26.2

Ablation Studies 2: Multi-task v.s. Single task:

Training_method Recall(%) AP(%) mIoU(%) Accuracy(%) IoU(%) Speed(ms/frame)
Det(only) 88.2 76.9 - - - 15.7
Da-Seg(only) - - 92.0 - - 14.8
Ll-Seg(only) - - - 79.6 27.9 14.8
Multitask 89.2 76.5 91.5 70.5 26.2 24.4

Notes:

  • The works we has use for reference including Multinet (paper,code),DLT-Net (paper),Faster R-CNN (paper,code),YOLOv5scode) ,PSPNet(paper,code) ,ENet(paper,code) SCNN(paper,code) SAD-ENet(paper,code). Thanks for their wonderful works.
  • In table 4, E, D, S and W refer to Encoder, Detect head, two Segment heads and whole network. So the Algorithm (First, we only train Encoder and Detect head. Then we freeze the Encoder and Detect head as well as train two Segmentation heads. Finally, the entire network is trained jointly for all three tasks.) can be marked as ED-S-W, and the same for others.

Visualization

Traffic Object Detection Result

detect result

Drivable Area Segmentation Result

Lane Detection Result

Notes:

  • The visualization of lane detection result has been post processed by quadratic fitting.

Project Structure

├─inference
│ ├─images   # inference images
│ ├─output   # inference result
├─lib
│ ├─config/default   # configuration of training and validation
│ ├─core    
│ │ ├─activations.py   # activation function
│ │ ├─evaluate.py   # calculation of metric
│ │ ├─function.py   # training and validation of model
│ │ ├─general.py   #calculation of metric、nms、conversion of data-format、visualization
│ │ ├─loss.py   # loss function
│ │ ├─postprocess.py   # postprocess(refine da-seg and ll-seg, unrelated to paper)
│ ├─dataset
│ │ ├─AutoDriveDataset.py   # Superclass dataset,general function
│ │ ├─bdd.py   # Subclass dataset,specific function
│ │ ├─hust.py   # Subclass dataset(Campus scene, unrelated to paper)
│ │ ├─convect.py 
│ │ ├─DemoDataset.py   # demo dataset(image, video and stream)
│ ├─models
│ │ ├─YOLOP.py    # Setup and Configuration of model
│ │ ├─light.py    # Model lightweight(unrelated to paper, zwt)
│ │ ├─commom.py   # calculation module
│ ├─utils
│ │ ├─augmentations.py    # data augumentation
│ │ ├─autoanchor.py   # auto anchor(k-means)
│ │ ├─split_dataset.py  # (Campus scene, unrelated to paper)
│ │ ├─utils.py  # logging、device_select、time_measure、optimizer_select、model_save&initialize 、Distributed training
│ ├─run
│ │ ├─dataset/training time  # Visualization, logging and model_save
├─tools
│ │ ├─demo.py    # demo(folder、camera)
│ │ ├─test.py    
│ │ ├─train.py    
├─toolkits
│ │ ├─deploy    # Deployment of model
│ │ ├─datapre    # Generation of gt(mask) for drivable area segmentation task
├─weights    # Pretraining model

Requirement

This codebase has been developed with python version 3.7, PyTorch 1.7+ and torchvision 0.8+:

conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2 -c pytorch

See requirements.txt for additional dependencies and version requirements.

pip install -r requirements.txt

Data preparation

Download

We recommend the dataset directory structure to be the following:

# The id represent the correspondence relation
├─dataset root
│ ├─images
│ │ ├─train
│ │ ├─val
│ ├─det_annotations
│ │ ├─train
│ │ ├─val
│ ├─da_seg_annotations
│ │ ├─train
│ │ ├─val
│ ├─ll_seg_annotations
│ │ ├─train
│ │ ├─val

Update the your dataset path in the ./lib/config/default.py.

Training

You can set the training configuration in the ./lib/config/default.py. (Including: the loading of preliminary model, loss, data augmentation, optimizer, warm-up and cosine annealing, auto-anchor, training epochs, batch_size).

If you want try alternating optimization or train model for single task, please modify the corresponding configuration in ./lib/config/default.py to True. (As following, all configurations is False, which means training multiple tasks end to end).

# Alternating optimization
_C.TRAIN.SEG_ONLY = False           # Only train two segmentation branchs
_C.TRAIN.DET_ONLY = False           # Only train detection branch
_C.TRAIN.ENC_SEG_ONLY = False       # Only train encoder and two segmentation branchs
_C.TRAIN.ENC_DET_ONLY = False       # Only train encoder and detection branch

# Single task 
_C.TRAIN.DRIVABLE_ONLY = False      # Only train da_segmentation task
_C.TRAIN.LANE_ONLY = False          # Only train ll_segmentation task
_C.TRAIN.DET_ONLY = False          # Only train detection task

Start training:

python tools/train.py

Evaluation

You can set the evaluation configuration in the ./lib/config/default.py. (Including: batch_size and threshold value for nms).

Start evaluating:

python tools/test.py --weights weights/End-to-end.pth

Demo Test

We provide two testing method.

Folder

You can store the image or video in --source, and then save the reasoning result to --save-dir

python tools/demo.py --source inference/images

Camera

If there are any camera connected to your computer, you can set the source as the camera number(The default is 0).

python tools/demo.py --source 0

Demonstration

input output

Deployment

Our model can reason in real-time on Jetson Tx2, with Zed Camera to capture image. We use TensorRT tool for speeding up. We provide code for deployment and reasoning of model in ./toolkits/deploy.

Segmentation Label(Mask) Generation

You can generate the label for drivable area segmentation task by running

python toolkits/datasetpre/gen_bdd_seglabel.py

Model Transfer

Before reasoning with TensorRT C++ API, you need to transfer the .pth file into binary file which can be read by C++.

python toolkits/deploy/gen_wts.py

After running the above command, you obtain a binary file named yolop.wts.

Running Inference

TensorRT needs an engine file for inference. Building an engine is time-consuming. It is convenient to save an engine file so that you can reuse it every time you run the inference. The process is integrated in main.cpp. It can determine whether to build an engine according to the existence of your engine file.

Third Parties Resource

Citation

If you find our paper and code useful for your research, please consider giving a star and citation 📝 :

@misc{2108.11250,
Author = {Dong Wu and Manwen Liao and Weitian Zhang and Xinggang Wang},
Title = {YOLOP: You Only Look Once for Panoptic Driving Perception},
Year = {2021},
Eprint = {arXiv:2108.11250},
}
Owner
Hust Visual Learning Team
Hust Visual Learning Team belongs to the Artificial Intelligence Research Institute in the School of EIC in HUST
Hust Visual Learning Team
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 5 Jan 26, 2022
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
Modular Gaussian Processes

Modular Gaussian Processes for Transfer Learning 🧩 Introduction This repository contains the implementation of our paper Modular Gaussian Processes f

Pablo Moreno-Muñoz 10 Mar 15, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
Layered Neural Atlases for Consistent Video Editing

Layered Neural Atlases for Consistent Video Editing Project Page | Paper This repository contains an implementation for the SIGGRAPH Asia 2021 paper L

Yoni Kasten 353 Dec 27, 2022
AoT is a system for automatically generating off-target test harness by using build information.

AoT: Auto off-Target Automatically generating off-target test harness by using build information. Brought to you by the Mobile Security Team at Samsun

Samsung 10 Oct 19, 2022
Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Ananta Raj Pant 2 Aug 08, 2022
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation

A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp

Adaloglou Nikolas 1.2k Dec 27, 2022
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
OptaPlanner wrappers for Python. Currently significantly slower than OptaPlanner in Java or Kotlin.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 211 Jan 02, 2023
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model

Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model. Designed sample dashboard with insights and recommendation for

Yash 2 Apr 07, 2022
Subpopulation detection in high-dimensional single-cell data

PhenoGraph for Python3 PhenoGraph is a clustering method designed for high-dimensional single-cell data. It works by creating a graph ("network") repr

Dana Pe'er Lab 42 Sep 05, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022