Beginner-friendly repository for Hacktober Fest 2021. Start your contribution to open source through baby steps. πŸ’œ

Overview

Hacktober Fest 2021

πŸŽ‰ Open source is changing the world – one contribution at a time! πŸŽ‰


This repository is made for beginners who are unfamiliar with open source and GitHub. So what is holding you back?! Make your first contribution to the open source and take home swags. πŸ‘• πŸ“¦

What is Hacktober Fest?

Hacktoberfest is a month-long open source contribution program hosted by DigitalOcean in the month of October for supporting open source development. Hacktoberfest encourages participation in the open source community, which grows bigger every year. Whether you are a pro in programming or a newbie, Hacktoberfest welcomes each one of the contributors for providing their valuable contribution to the open source community. Completing the challenge earns you a limited edition swags and other exiciting goodies.

How to receive swags?

  • Register yourself at the Hacktober Fest Website
  • Create 4 pull-requests from repositories participating in the challenge (repositories having hacktoberfest topic)
  • Successfully merged PRs will be validated further for 14 days.
  • After that, the PR is accepted
  • Remember! All PRs must be done between October 1 to October 31 to be eligible for swags.
  • This year the first 55,000 participants will be eligible for the prize.

How to contribute?

Read RULES.md before creating a pull request

PRs violating the rules will be closed and reported Spam! ❌

If you're not comfortable with command line, here are tutorials using GUI tools. If you don't have git on your machine, install it.

1. Fork the repository.

fork this repository

2. Clone your forked copy of the project.

git clone  https://github.com/abhilashmnair/HacktoberFest2021.git

3. Navigate to the project directory πŸ“ .

cd HacktoberFest2021

4. Add a reference(remote) to the original repository.

git remote add upstream https://github.com/abhilashmnair/HacktoberFest2021.git

5. Check the remotes for this repository.

git remote -v

6. Always take a pull from the upstream repository to your master branch to keep it at par with the main project(updated repository).

git pull upstream main

7. Create a new branch.

git checkout -b <your_branch_name>

8. Perform your desired changes to the code base.

9. Track your changes βœ”οΈ .

git add *

10. Commit your changes .

git commit -m "Message"

11. Push the committed changes in your feature branch to your remote repo.

git push -u origin <your_branch_name>

12. To create a pull request, click on compare and pull requests. Please ensure you compare your feature branch to the desired branch of the repository you are supposed to make a PR to.

Not a developer or programmer? Don't worry! Add useful documentation and fix grammatical errors in the README file. Every single contribution of yours will benefit your open source venture.

License

This repository and the contained files are licensed under MIT License. See LICENSE for full text.


πŸ’œ Thank You for your participation! πŸ’œ

Owner
Abhilash M Nair
Abhilash M Nair
[제 13회 νˆ¬λΉ…μŠ€ 컨퍼런슀] OK Mugle! - μž₯λ₯΄λΆ€ν„° λ©œλ‘œλ””κΉŒμ§€, Content-based Music Recommendation

Ok Mugle! 🎡 μž₯λ₯΄λΆ€ν„° λ©œλ‘œλ””κΉŒμ§€, Content-based Music Recommendation 'Ok Mugle!'은 제13회 νˆ¬λΉ…μŠ€ 컨퍼런슀(2022.01.15)μ—μ„œ μ§„ν–‰ν•œ μŒμ•… μΆ”μ²œ ν”„λ‘œμ νŠΈμž…λ‹ˆλ‹€. Description πŸ“– λ³Έ ν”„λ‘œμ νŠΈμ—μ„œλŠ” Kakao

SeongBeomLEE 5 Oct 09, 2022
Source code for our EMNLP'21 paper γ€ŠRaise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL) This repository contains all source code used to generate the results in the article "

Charlotte Loh 3 Jul 23, 2022
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip MΓΌller 10 Dec 07, 2022
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023
Unofficial PyTorch implementation of MobileViT.

MobileViT Overview This is a PyTorch implementation of MobileViT specified in "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Tr

Chin-Hsuan Wu 348 Dec 23, 2022
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李倏 663 Nov 30, 2022
MoCap-Solver: A Neural Solver for Optical Motion Capture Data

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions.

55 Dec 28, 2022