Implementation of average- and worst-case robust flatness measures for adversarial training.

Overview

Relating Adversarially Robust Generalization to Flat Minima

This repository contains code corresponding to the MLSys'21 paper:

D. Stutz, M. Hein, B. Schiele. Relating Adversarially Robust Generalization to Flat Minima. ICCV, 2021.

Please cite as:

@article{Stutz2021ICCV,
    author    = {David Stutz and Matthias Hein and Bernt Schiele},
    title     = {Relating Adversarially Robust Generalization to Flat Minima},
    booktitle = {IEEE International Conference on Computer Vision (ICCV)},
    publisher = {IEEE Computer Society},
    year      = {2021}
}

Also check the project page.

This repository allows to reproduce experiments reported in the paper or use the correspondsing quantization, weight clipping or training procedures as standalone components.

Relating Adversarially Robust Generalization to Flat Minima.

Overview

Installation

The following list includes all Python packages required

  • torch (including torch.utils.tensorboard)
  • torchvision
  • tensorflow
  • tensorboard
  • h5py
  • json
  • numpy
  • zipfile
  • umap
  • sklearn
  • imageio
  • scipy
  • imgaug

The requirements can be checked using python3 tests/test_installation.py. If everything works correctly, all tests in tests/ should run without failure.

Code tested with the following versions:

  • Debain 9
  • Python 3.5.3
  • torch 1.3.1+cu92 (with CUDA 9.2)
  • torchvision 0.4.2+cu92
  • tensorflow 1.14.0
  • tensorboard 1.14.0
  • h5py 2.9.0
  • numpy 1.18.2
  • scipy 1.4.1
  • sklearn 0.22.1
  • imageio 2.5.0
  • imgaug 0.2.9
  • gcc 6.3.0

Also see environment.yml for a (not minimal) export of the used environment.

Download Datasets

To prepare experiments, datasets need to be downloaded and their paths need to be specified:

Check common/paths.py and adapt the following variables appropriately:

# Absolute path to the data directory:
# BASE_DATA/mnist will contain MNIST
# BASE_DATA/Cifar10 (capitlization!) will contain Cifar10
# BASE_DATA/Cifar100 (capitlization!) will contain Cifar100
BASE_DATA = '/absolute/path/to/data/directory/'
# Absolute path to experiments directory, experimental results will be written here (i.e., models, perturbed models ...)
BASE_EXPERIMENTS = '/absolute/path/to/experiments/directory/'
# Absolute path to log directory (for TensorBoard logs).
BASE_LOGS = '/absolute/path/to/log/directory/'
# Absolute path to code directory (this should point to the root directory of this repository)
BASE_CODE = '/absolute/path/to/root/of/this/repository/'

Download datasets and copy to the appropriate places. Note that MNIST is only needed for tests and is not used in the paper's experiments.

Note that MNIST was not used in the paper, but will be required when running some tests in tests/!

Dataset Download
MNIST mnist.zip
CIFAR10 cifar10.zip
TinyImages 500k tinyimages500k.zip

Manual Conversion of Datasets

Download MNIST and 500k tiny images from the original sources [1,2]. Then, use the scripts in data to convert and check the datasets. For the code to run properly, the datasets are converted to HDF5 format. Cifar is downloaded automatically.

[1] http://yann.lecun.com/exdb/mnist/
[2] https://github.com/yaircarmon/semisup-adv

The final dataset directory structure should look as follows:

BASE_DATE/mnist
|- t10k-images-idx3-ubyte.gz (downloaded)
|- t10k-labels-idx-ubyte.gz (downloaded)
|- train-images-idx3-ubyte.gz (downloaded)
|- train-labels-idx1-ubyte.gz (downloaded)
|- train_images.h5 (from data/mnist/convert_mnist.py)
|- test_images.h5 (from data/mnist/convert_mnist.py)
|- train_labels.h5 (from data/mnist/convert_mnist.py)
|- test_labels.h5 (from data/mnist/convert_mnist.py)
BASE_DATA/Cifar10
|- cifar-10-batches-py (from torchvision)
|- cifar-10-python.tar.gz (from torchvision)
|- train_images.h5 (from data/cifar10/convert_cifar.py)
|- test_images.h5 (from data/cifar10/convert_cifar.py)
|- train_labels.h5 (from data/cifar10/convert_cifar.py)
|- test_labels.h5 (from data/cifar10/convert_cifar.py)
BASE_DATA/500k_pseudolabeled.pickle
BASE_DATA/tinyimages500k
|- train_images.h5
|- train_labels.h5

Standalone Components

There are various components that can be used in a standalone fashion. To highlight a few of them:

  • Training procedures for adversarial training variants:
    • Vanilla adversarial training - common/train/adversarial_training.py
    • Adversarial training with (adversarial) weight perturbations - common/train/adversarial_weights_inputs_training.py
    • Adversarial training with semi-supervision - common/train/adversarial_semi_supervised_training.py
    • Adversarial training with Entropy-SGD - common/train/entropy_adversarial_training.py
    • TRADES or MART - common/train/[mart|trades]_adversarial_training.py
  • Adversarial attacks:
    • PGD and variants - attacks/batch_gradient_descent.py
    • AutoAttack - attacks/batch_auto_attack.py
  • Computing Hessian eigenvalues and vectors - common/hessian.py

Reproduce Experiments

Experiments are defined in experiments/iccv. The experiments, i.e., attacks, flatness measures and training modesl, are defined in experiments/iccv/common.py. This is done for three cases on CIFAR10: with AutoAugment using cifar10.py, without AutoAugment in cifar10_noaa.py and with unlabeled data (without AutoAugment) in cifar10_noaa_500k.py.

The experiments are run using the command line tools provided in experiments/, e.g., experiments/train.py for training a model and experiments/attack.py for injecting bit errors. Results are evaluated in Jupyter notebooks, an examples can be found in experiments/mlsys/eval/evaluation_cifar10.ipynb.

All experiments are saved in BASE_EXPERIMENTS.

Training

Training a model is easy using the following command line tool:

python3 train.py iccv.cifar10_noaa resnet18 at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100 --whiten --n=rebn --channels=64

It also allows to use different activation functions using the -a option, different architectures or normalization layers. As detailed above, iccv.cifar10_noaa corresponds to CIFAR10 without AutoAugment. The same models can be trained with AutoAugment using iccv.cifar10 or with additional unlabeled data using iccv.cifar10_noo_500k. The model identifier, e.g., at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100 is defined in experiments/iccv/common.py and examples can be found below.

Evaluation

To evaluate trained models on clean test or training examples use:

python3 test.py iccv.cifar10_noaa resnet18 at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100 --whiten --n=rebn --channels=64

with --train for training examples. Using --epochs this can be done for all snapshots, i.e., every 5th epoch.

Adversarial evaluation involves computing robust test error using AutoAttack, robust loss using PGD and average- as well as worst-case flatness:

python3 attack.py iccv.cifar10_noaa resnet18 at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100 --whiten --n=rebn --channels=64 cifar10_benchmark

This can also be done for every 5th epoch as follows:

python3 attack.py iccv.cifar10_noaa resnet18 at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100 --whiten --n=rebn --channels=64 cifar10_epochs_benchmark --epochs

(Note that the downloadable experiment data only includes snapshots for vanilla adversarial training in the interest of download size.)

Visualization

Pre-computed experiments can be downloaded here. Note that this data does not correspond to the results from the paper, but were generated using this repository to illustrate usage. These models also do not include snapshots in the interest of download size. Log files for plotting training curves are also not included.

The plots from the paper can be produced using experiments/iccv/eval/evaluation_iccv.ipynb. When ran correctly, the notebook should look as in experiments/iccv/eval/evaluation_iccv.pdf. The evaluation does not include all models from the paper by default, but illustrates the usage on some key models. To run the evaluation and create the below plots, the following models need to be trained and evaluated using cifar10_benchmark defined in experiments/iccv.common.py:

  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • at_linf_gd_normalized_lr0007_mom0_i14_e00314_f100
  • at_linf_gd_normalized_lr0007_mom0_i7_e00352_f100
  • at_ii_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • at_pll_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • 0005p_at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ls01
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ls02
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ls03
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ls04
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ls05
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ln01
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ln02
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ln03
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ln04
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ln05
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_cyc
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_wd0001
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_wd001
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_wd005
  • at_ssl05_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • at_ssl1_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • at_ssl2_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • at_ssl4_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • at_ssl8_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • trades1_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • trades3_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • trades6_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • trades9_linf_gd_normalized_lr0007_mom0_i7_e00314_f100

Examples for training and evaluation can be found above. The corresponding correlation plots from the paper should look as follows with the downloaded experiment data:

Average-Case Robust Flatness and RLoss.

Average-Case Robust Flatness and Robust Generalization.

Visualizing Robust Flatness

For visualizing the robust loss landscape across, the following commands can be used:

python3 visualize.py iccv.cifar10_noaa resnet18 at_linf_gd_normalized_lr0007_mom0_i14_e00314_f100 --channels=64 --whiten -n=rebn weight_l2_random_nonorm2_e01_at10 -l=input_linf_gd_normalized_lr0007_mom0_i10_e00314_at10 -d=layer_l2_05
python3 visualize.py iccv.cifar10_noaa resnet18 at_linf_gd_normalized_lr0007_mom0_i14_e00314_f100 --channels=64 --whiten -n=rebn weight_l2_gd_nonorm2_lwrl2normalized_i7_lr001_mom0_e0005_at10_test -l=input_linf_gd_normalized_lr0007_mom0_i10_e00314_at10 -d=layer_l2_001

Random Direction.

Adversarial Direction.

Hessian Eigenvalues

The following command allows to compute Hessian eigenvalues:

python3 hessian.py iccv.cifar10_noaa resnet18 at_linf_gd_normalized_lr0007_mom0_i14_e00314_f100 --channels=64 --whiten -n=rebn -k=4

License

This repository includes code from:

Copyright (c) 2021 David Stutz, Max-Planck-Gesellschaft

Please read carefully the following terms and conditions and any accompanying documentation before you download and/or use this software and associated documentation files (the "Software").

The authors hereby grant you a non-exclusive, non-transferable, free of charge right to copy, modify, merge, publish, distribute, and sublicense the Software for the sole purpose of performing non-commercial scientific research, non-commercial education, or non-commercial artistic projects.

Any other use, in particular any use for commercial purposes, is prohibited. This includes, without limitation, incorporation in a commercial product, use in a commercial service, or production of other artefacts for commercial purposes.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

You understand and agree that the authors are under no obligation to provide either maintenance services, update services, notices of latent defects, or corrections of defects with regard to the Software. The authors nevertheless reserve the right to update, modify, or discontinue the Software at any time.

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. You agree to cite the corresponding papers (see above) in documents and papers that report on research using the Software.

Owner
David Stutz
PhD student at Max Planck Institute for Informatics, davidstutz.de
David Stutz
Dark Finix: All in one hacking framework with almost 100 tools

Dark Finix - Hacking Framework. Dark Finix is a all in one hacking framework wit

Md. Nur habib 2 Feb 18, 2022
Json2Xml tool will help you convert from json COCO format to VOC xml format in Object Detection Problem.

JSON 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Json2Xml t

Nguyễn Trường Lâu 6 Aug 22, 2022
Hardware-accelerated DNN model inference ROS2 packages using NVIDIA Triton/TensorRT for both Jetson and x86_64 with CUDA-capable GPU

Isaac ROS DNN Inference Overview This repository provides two NVIDIA GPU-accelerated ROS2 nodes that perform deep learning inference using custom mode

NVIDIA Isaac ROS 62 Dec 14, 2022
Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

fwhr-calc-website This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azur

SoohyunPark 1 Feb 07, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
Development Kit for the SoccerNet Challenge

SoccerNetv2-DevKit Welcome to the SoccerNet-V2 Development Kit for the SoccerNet Benchmark and Challenge. This kit is meant as a help to get started w

Silvio Giancola 117 Dec 30, 2022
A transformer model to predict pathogenic mutations

MutFormer MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model wi

Wang Genomics Lab 2 Nov 29, 2022
OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
Reinforcement Learning for the Blackjack

Reinforcement Learning for Blackjack Author: ZHA Mengyue Math Department of HKUST Problem Statement We study playing Blackjack by reinforcement learni

Dolores 3 Jan 24, 2022
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
Learning Compatible Embeddings, ICCV 2021

LCE Learning Compatible Embeddings, ICCV 2021 by Qiang Meng, Chixiang Zhang, Xiaoqiang Xu and Feng Zhou Paper: Arxiv We cannot release source codes pu

Qiang Meng 25 Dec 17, 2022
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
Code for ICCV2021 paper SPEC: Seeing People in the Wild with an Estimated Camera

SPEC: Seeing People in the Wild with an Estimated Camera [ICCV 2021] SPEC: Seeing People in the Wild with an Estimated Camera, Muhammed Kocabas, Chun-

Muhammed Kocabas 187 Dec 26, 2022
Parsing, analyzing, and comparing source code across many languages

Semantic semantic is a Haskell library and command line tool for parsing, analyzing, and comparing source code. In a hurry? Check out our documentatio

GitHub 8.6k Dec 28, 2022
Pytorch implementation of CoCon: A Self-Supervised Approach for Controlled Text Generation

COCON_ICLR2021 This is our Pytorch implementation of COCON. CoCon: A Self-Supervised Approach for Controlled Text Generation (ICLR 2021) Alvin Chan, Y

alvinchangw 79 Dec 18, 2022
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
A Self-Supervised Contrastive Learning Framework for Aspect Detection

AspDecSSCL A Self-Supervised Contrastive Learning Framework for Aspect Detection This repository is a pytorch implementation for the following AAAI'21

Tian Shi 30 Dec 28, 2022
Complete* list of autonomous driving related datasets

AD Datasets Complete* and curated list of autonomous driving related datasets Contributing Contributions are very welcome! To add or update a dataset:

Daniel Bogdoll 13 Dec 19, 2022
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Quan Nguyen 7 May 11, 2022