Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Overview

Implicit Representations of Meaning in Neural Language Models

Preliminaries

Create and set up a conda environment as follows:

conda create -n state-probes python=3.7
conda activate state-probes
pip install -r requirements.txt

Install the appropriate torch 1.7.0 for your cuda version:

conda install pytorch==1.7.0 cudatoolkit=<cuda_version> -c pytorch

Before running any command below, run

export PYTHONPATH=.
export TOKENIZERS_PARALLELISM=true

Data

The Alchemy data is downloaded from their website.

wget https://nlp.stanford.edu/projects/scone/scone.zip
unzip scone.zip

The synthetic version of alchemy was generated by running:

echo 0 > id #the code requires a file called id with a number in it ...
python alchemy_artificial_generator.py --num_scenarios 3600 --output synth_alchemy_train
python alchemy_artificial_generator.py --num_scenarios 500 --output synth_alchemy_dev
python alchemy_artificial_generator.py --num_scenarios 900 --output synth_alchemy_test

You can also just download our generated data through:

wget http://web.mit.edu/bzl/www/synth_alchemy.tar.gz
tar -xzvf synth_alchemy.tar.gz

The Textworld data is under

wget http://web.mit.edu/bzl/www/tw_data.tar.gz
tar -xzvf tw_data.tar.gz

LM Training

To train a BART or T5 model on Alchemy data

python scripts/train_alchemy.py \
    --arch [t5|bart] [--no_pretrain] \
    [--synthetic] --encode_init_state NL

Saves model checkpoints under sconeModels/*.

To train a BART or T5 model on Textworld data

python scripts/train_textworld.py \
    --arch [t5/bart] [--no_pretrain] \
    --data tw_data/simple_traces --gamefile tw_games/simple_games

Saves model checkpoints nder twModels/*.

Probe Training & Evaluation

Alchemy

The main probe command is as follows:

python scripts/probe_alchemy.py \
    --arch [bart|t5] --lm_save_path <path_to_lm_checkpoint> [--no_pretrain] \
    --encode_init_state NL --nonsynthetic \
    --probe_target single_beaker_final.NL --localizer_type single_beaker_init_full \
    --probe_type linear --probe_agg_method avg \
    --encode_tgt_state NL.[bart|t5] --tgt_agg_method avg \
    --batchsize 128 --eval_batchsize 1024 --lr 1e-4

For evaluation, add --eval_only --probe_save_path <path_to_probe_checkpoint>. This will save model predictions to a .jsonl file under the same directory as the probe checkpoint.

Add --control_input for No LM experiment.

Change --probe_target to single_beaker_init.NL to decode initial state.

For localization experiments, set --localizer_type single_beaker_init_{$i}.offset{$off} for some token i in {article, pos.[R0|R1|R2], beaker.[R0|R1], verb, amount, color, end_punct} and some integer offset off between 0 and 6.

Saves probe checkpoints under probe_models_alchemy/*.

Intervention experiment results follow from running the script:

python scripts/intervention.py \
    --arch [bart|t5] \
    --encode_init_state NL \
    --create_type drain_1 \
    --lm_save_path <path_to_lm_checkpoint>

which creates two contexts and replaces a select few encoded tokens to modify the underlying belief state.

Textworld

Begin by creating the full set of encoded proposition representations

python scripts/get_all_tw_facts.py \
    --data tw_data/simple_traces --gamefile tw_data/simple_games \
    --state_model_arch [bart|t5] \
    --probe_target belief_facts_pair \
    --state_model_path [None|pretrain|<path_to_lm_checkpoint>] \
    --out_file <path_to_prop_encodings>

Run the probe with

python scripts/probe_textworld.py \
    --arch [bart|t5] --data tw_data/simple_traces --gamefile tw_data/simple_games \
    --probe_target final.full_belief_facts_pair --encode_tgt_state NL.[bart|t5] \
    --localizer_type belief_facts_pair_[first|last|all] --probe_type 3linear_classify \
    --probe_agg_method avg --tgt_agg_method avg \
    --lm_save_path <path_to_lm_checkpoint> [--no_pretrain] \
    --ents_to_states_file <path_to_prop_encodings> \
    --eval_batchsize 256 --batchsize 32

For evaluation, add --eval_only --probe_save_path <path_to_probe_checkpoint>. This will save model predictions to a .jsonl file under the same directory as the probe checkpoint.

Add --control_input for No LM experiment.

Change --probe_target to init.full_belief_facts_pair to decode initial state.

For remap experiments, change --probe_target to final.full_belief_facts_pair.control_with_rooms.

For decoding from just one side of propositions, replace any instance of belief_facts_pair (in --probe_target and --localizer_type) with belief_facts_single and rerun both commands (first get the full proposition encodings, then run the probe).

Saves probe checkpoints under probe_models_textworld/*.

Print Metrics

Print full metrics (state EM, entity EM, subdivided by relations vs. propositions, etc.) using scripts/print_metrics.py.

python scripts/print_metrics.py \
    --arch [bart|t5] --domain [alchemy|textworld] \
    --pred_files <path_to_model_predictions_1>,<path_to_model_predictions_2>,<path_to_model_predictions_3>,... \
    [--use_remap_domain --remap_fn <path_to_remap_model_predictions>] \
    [--single_side_probe]
DCGAN LSGAN WGAN-GP DRAGAN PyTorch

Recommendation Our GAN based work for facial attribute editing - AttGAN. News 8 April 2019: We re-implement these GANs by Tensorflow 2! The old versio

Zhenliang He 408 Nov 30, 2022
Official implementation of the NeurIPS 2021 paper Online Learning Of Neural Computations From Sparse Temporal Feedback

Online Learning Of Neural Computations From Sparse Temporal Feedback This repository is the official implementation of the NeurIPS 2021 paper Online L

Lukas Braun 3 Dec 15, 2021
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.

Ubiquitous Knowledge Processing Lab 22 Jan 02, 2023
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Paper: Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification

Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification T M Feroz Ali, Subhasis Chaudhuri, ICVGIP-20-21

T M Feroz Ali 3 Jun 17, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedal

Meta Research 309 Dec 16, 2022
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
reimpliment of DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation

DFANet This repo is an unofficial pytorch implementation of DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation log 2019.4.16 After 48

shen hui xiang 248 Oct 21, 2022