code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

Related tags

Deep LearningMMNet
Overview

MMNet

This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.".

Pre-requisite

conda create -n mmnet python==3.8.0
conda activate mmnet
conda install torch==1.8.1 torchvision==0.9.1
pip install matplotlib scikit-image pandas

for installation of gluoncvth (fcn-resnet101):

git clone https://github.com/StacyYang/gluoncv-torch.git
cd gluoncv-torch
python setup.py install

Reproduction

for test

Trained models are available on [google drive].

pascal with fcn-resnet101 backbone([email protected]:81.6%):

python test.py --alpha 0.05 --backbone fcn-resnet101 --ckp_name path\to\ckp_pascal_fcnres101.pth --resize 224,320

spair with fcn-resnet101 backbone([email protected]:46.6%):

python test.py --alpha 0.05 --benchmark spair --backbone fcn-resnet101 --ckp_name path\to\ckp_spair_fcnres101.pth --resize 224,320

Bibtex

If you use this code for your research, please consider citing:

@article{zhao2021multi,
  title={Multi-scale Matching Networks for Semantic Correspondence},
  author={Zhao, Dongyang and Song, Ziyang and Ji, Zhenghao and Zhao, Gangming and Ge, Weifeng and Yu, Yizhou},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}
You might also like...
A Pytorch implementation of
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Siamese-nn-semantic-text-similarity - A repository containing comprehensive Neural Networks based PyTorch implementations for the semantic text similarity task A PyTorch implementation of
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

《Dual-Resolution Correspondence Network》(NeurIPS 2020)
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Comments
  • NaN during training

    NaN during training

    Hi, congrats on your paper! I was trying to run your training code (with resnet 101 on pf-pascal) but directly after a couple of iterations, nan appear in the input. Have you ever seen this issue? Thanks

    opened by PruneTruong 2
  • In def calLayer1,i do not know where are self.conv1_1_down,self.conv1_2_down,self.conv1_3_down,self.wa_1

    In def calLayer1,i do not know where are self.conv1_1_down,self.conv1_2_down,self.conv1_3_down,self.wa_1

    Hello,this paper is very nice,i am very love it. I read your code,in Model.py, def calLayer1(self, feats): sum1 = self.conv1_1_down(self.msblock1_1(feats[1])) +
    self.conv1_2_down(self.msblock1_2(feats[2])) +
    self.conv1_3_down(self.msblock1_3(feats[3])) sum1 = self.wa_1(sum1) return sum1 I do not find where are these operation,self.conv1_1_down,self.conv1_2_down,self.conv1_3_down,self.wa_1,so where are these ,in which document.Thank you,looking forward to your reply.

    opened by liang532 1
  • How to prepare the PF-Pascal dataset?

    How to prepare the PF-Pascal dataset?

    I downloaded the PF-dataset-Pascal.zip from the Proposal Flow paper's web page, extracted it, and run the next line of command, but get errors about missing data files.

    Input:

    python test.py --alpha 0.05 --backbone fcn-resnet101 --ckp_name assets/model/mmnet_fcnresnet101_pascal.pth --resize 224,320
    

    Expected output: some results about the benchmark results.

    Actual output:

    currently executing test.py file.
    2021-11-19 02:01:59,172 - INFO - Options listed below:----------------
    2021-11-19 02:01:59,172 - INFO - name: framework_train
    2021-11-19 02:01:59,172 - INFO - benchmark: pfpascal
    2021-11-19 02:01:59,172 - INFO - thresh_type: auto
    2021-11-19 02:01:59,172 - INFO - backbone_name: fcn-resnet101
    2021-11-19 02:01:59,172 - INFO - ms_rate: 4
    2021-11-19 02:01:59,173 - INFO - feature_channel: 21
    2021-11-19 02:01:59,173 - INFO - batch: 5
    2021-11-19 02:01:59,173 - INFO - gpu: 0
    2021-11-19 02:01:59,173 - INFO - data_path: /data/SC_Dataset
    2021-11-19 02:01:59,173 - INFO - ckp_path: ./checkpoints_debug
    2021-11-19 02:01:59,173 - INFO - visualization_path: visualization
    2021-11-19 02:01:59,173 - INFO - model_type: MMNet
    2021-11-19 02:01:59,173 - INFO - ckp_name: assets/model/mmnet_fcnresnet101_pascal.pth
    2021-11-19 02:01:59,173 - INFO - log_path: ./logs/
    2021-11-19 02:01:59,173 - INFO - resize: 224,320
    2021-11-19 02:01:59,173 - INFO - max_kps_num: 50
    2021-11-19 02:01:59,173 - INFO - split_type: test
    2021-11-19 02:01:59,173 - INFO - alpha: 0.05
    2021-11-19 02:01:59,173 - INFO - resolution: 2
    2021-11-19 02:01:59,173 - INFO - Options all listed.------------------
    2021-11-19 02:01:59,173 - INFO - ckp file: assets/model/mmnet_fcnresnet101_pascal.pth
    Traceback (most recent call last):
      File "/home/runner/MMNet/test.py", line 127, in <module>
        test(logger, options)
      File "/home/runner/MMNet/test.py", line 65, in test
        test_dataset = Dataset.CorrespondenceDataset(
      File "/home/runner/MMNet/data/PascalDataset.py", line 32, in __init__
        self.train_data = pd.read_csv(self.spt_path)
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/util/_decorators.py", line 311, in wrapper
        return func(*args, **kwargs)
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 586, in read_csv
        return _read(filepath_or_buffer, kwds)
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 482, in _read
        parser = TextFileReader(filepath_or_buffer, **kwds)
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 811, in __init__
        self._engine = self._make_engine(self.engine)
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1040, in _make_engine
        return mapping[engine](self.f, **self.options)  # type: ignore[call-arg]
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/io/parsers/c_parser_wrapper.py", line 51, in __init__
        self._open_handles(src, kwds)
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/io/parsers/base_parser.py", line 222, in _open_handles
        self.handles = get_handle(
      File "/home/runner/miniconda3/lib/python3.9/site-packages/pandas/io/common.py", line 702, in get_handle
        handle = open(
    FileNotFoundError: [Errno 2] No such file or directory: '/data/SC_Dataset/PF-PASCAL/test_pairs.csv'
    

    P.S. Output of executing ls /data/SC_Dataset/PF-PASCAL/:

    Annotations  html  index.html  JPEGImages  parsePascalVOC.mat  ShowMatchingPairs
    
    opened by tjyuyao 2
  • How to reproduce the reported test accuracy?

    How to reproduce the reported test accuracy?

    By running given following command with code on the main branch:

    python test.py --alpha 0.05 --backbone fcn-resnet101 --ckp_name assets/model/mmnet_fcnresnet101_spair.pth --resize 224,320 --benchmark spair
    

    I expect to get the reported accuracy in the Table.2 of paper, i.e. 50.4 "all" accuracy, or spair with fcn-resnet101 backbone([email protected]:46.6%): as noted in the README.md file. However I get the following output, finding nowhere the related results. Can you point out the steps to reproduce the test accuracy?

    2021-11-19 00:49:54,452 - INFO - Options listed below:----------------
    2021-11-19 00:49:54,452 - INFO - name: framework_train
    2021-11-19 00:49:54,453 - INFO - benchmark: spair
    2021-11-19 00:49:54,453 - INFO - thresh_type: auto
    2021-11-19 00:49:54,454 - INFO - backbone_name: fcn-resnet101
    2021-11-19 00:49:54,455 - INFO - ms_rate: 4
    2021-11-19 00:49:54,455 - INFO - feature_channel: 21
    2021-11-19 00:49:54,456 - INFO - batch: 5
    2021-11-19 00:49:54,456 - INFO - gpu: 0
    2021-11-19 00:49:54,457 - INFO - data_path: /data/SC_Dataset
    2021-11-19 00:49:54,457 - INFO - ckp_path: ./checkpoints_debug
    2021-11-19 00:49:54,458 - INFO - visualization_path: visualization
    2021-11-19 00:49:54,458 - INFO - model_type: MMNet
    2021-11-19 00:49:54,459 - INFO - ckp_name: assets/model/mmnet_fcnresnet101_spair.pth
    2021-11-19 00:49:54,459 - INFO - log_path: ./logs/
    2021-11-19 00:49:54,460 - INFO - resize: 224,320
    2021-11-19 00:49:54,460 - INFO - max_kps_num: 50
    2021-11-19 00:49:54,461 - INFO - split_type: test
    2021-11-19 00:49:54,461 - INFO - alpha: 0.05
    2021-11-19 00:49:54,462 - INFO - resolution: 2
    2021-11-19 00:49:54,462 - INFO - Options all listed.------------------
    2021-11-19 00:49:54,463 - INFO - ckp file: assets/model/mmnet_fcnresnet101_spair.pth
    2021-11-19 00:50:04,950 - INFO - [    0/12234]: 	 [Pair PCK: 0.333]	[Average: 0.333] aeroplane
    2021-11-19 00:50:04,953 - INFO - [    1/12234]: 	 [Pair PCK: 0.100]	[Average: 0.217] aeroplane
    2021-11-19 00:50:04,956 - INFO - [    2/12234]: 	 [Pair PCK: 0.308]	[Average: 0.247] aeroplane
    2021-11-19 00:50:04,958 - INFO - [    3/12234]: 	 [Pair PCK: 0.364]	[Average: 0.276] aeroplane
    2021-11-19 00:50:04,960 - INFO - [    4/12234]: 	 [Pair PCK: 0.000]	[Average: 0.221] aeroplane
    2021-11-19 00:50:05,575 - INFO - [    5/12234]: 	 [Pair PCK: 0.200]	[Average: 0.217] aeroplane
    2021-11-19 00:50:05,577 - INFO - [    6/12234]: 	 [Pair PCK: 0.250]	[Average: 0.222] aeroplane
    2021-11-19 00:50:05,580 - INFO - [    7/12234]: 	 [Pair PCK: 0.308]	[Average: 0.233] aeroplane
    2021-11-19 00:50:05,583 - INFO - [    8/12234]: 	 [Pair PCK: 0.182]	[Average: 0.227] aeroplane
    2021-11-19 00:50:05,585 - INFO - [    9/12234]: 	 [Pair PCK: 0.636]	[Average: 0.268] aeroplane
    2021-11-19 00:50:06,153 - INFO - [   10/12234]: 	 [Pair PCK: 0.667]	[Average: 0.304] aeroplane
    2021-11-19 00:50:06,156 - INFO - [   11/12234]: 	 [Pair PCK: 0.385]	[Average: 0.311] aeroplane
    2021-11-19 00:50:06,158 - INFO - [   12/12234]: 	 [Pair PCK: 0.455]	[Average: 0.322] aeroplane
    2021-11-19 00:50:06,160 - INFO - [   13/12234]: 	 [Pair PCK: 0.250]	[Average: 0.317] aeroplane
    2021-11-19 00:50:06,163 - INFO - [   14/12234]: 	 [Pair PCK: 0.615]	[Average: 0.337] aeroplane
    2021-11-19 00:50:06,731 - INFO - [   15/12234]: 	 [Pair PCK: 0.000]	[Average: 0.316] aeroplane
    ...
    2021-11-19 01:13:47,264 - INFO - [12216/12234]: 	 [Pair PCK: 0.222]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,265 - INFO - [12217/12234]: 	 [Pair PCK: 0.200]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,266 - INFO - [12218/12234]: 	 [Pair PCK: 0.250]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,268 - INFO - [12219/12234]: 	 [Pair PCK: 0.222]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,837 - INFO - [12220/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,838 - INFO - [12221/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,848 - INFO - [12222/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,850 - INFO - [12223/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:47,853 - INFO - [12224/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,422 - INFO - [12225/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,424 - INFO - [12226/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,425 - INFO - [12227/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,427 - INFO - [12228/12234]: 	 [Pair PCK: 0.333]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,429 - INFO - [12229/12234]: 	 [Pair PCK: 0.222]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,896 - INFO - [12230/12234]: 	 [Pair PCK: 0.333]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,899 - INFO - [12231/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,899 - INFO - [12232/12234]: 	 [Pair PCK: 0.000]	[Average: 0.333] tvmonitor
    2021-11-19 01:13:48,901 - INFO - [12233/12234]: 	 [Pair PCK: 0.111]	[Average: 0.333] tvmonitor
    
    opened by tjyuyao 1
Releases(v0.1.0)
Owner
joey zhao
Master in Computer Sciences and Technology at Fudan University
joey zhao
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

48 Dec 26, 2022
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations

LIMEcraft LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations The LIMEcraft algorithm is an explanatory method based on

MI^2 DataLab 4 Aug 01, 2022
Let's create a tool to convert Thailand budget from PDF to CSV.

thailand-budget-pdf2csv Let's create a tool to convert Thailand Government Budgeting from PDF to CSV! รวมพลัง Dev แปลงงบ จาก PDF สู่ Machine-readable

Kao.Geek 88 Dec 19, 2022
Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Generative Handwriting Demo using TensorFlow An attempt to implement the random handwriting generation portion of Alex Graves' paper. See my blog post

hardmaru 686 Nov 24, 2022
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
A library that allows for inference on probabilistic models

Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using

Meta Research 234 Dec 29, 2022
Learning to Estimate Hidden Motions with Global Motion Aggregation

Learning to Estimate Hidden Motions with Global Motion Aggregation (GMA) This repository contains the source code for our paper: Learning to Estimate

Shihao Jiang (Zac) 221 Dec 18, 2022
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
Repository for the COLING 2020 paper "Explainable Automated Fact-Checking: A Survey."

Explainable Fact Checking: A Survey This repository and the accompanying webpage contain resources for the paper "Explainable Fact Checking: A Survey"

Neema Kotonya 42 Nov 17, 2022
PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation Viraj Prabhu, Shivam Khare, Deeks

Viraj Prabhu 46 Dec 24, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a

Ziyao Zeng 14 Feb 26, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
Space Invaders For Python

Space-Invaders Just download or clone the git repository. To run the Space Invader game you need to have pyhton installed in you system. If you dont h

Fei 5 Jul 27, 2022