A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

Overview

GAM

PWC codebeat badge repo sizebenedekrozemberczki

A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018).

Abstract

Graph classification is a problem with practical applications in many different domains. To solve this problem, one usually calculates certain graph statistics (i.e., graph features) that help discriminate between graphs of different classes. When calculating such features, most existing approaches process the entire graph. In a graphlet-based approach, for instance, the entire graph is processed to get the total count of different graphlets or subgraphs. In many real-world applications, however, graphs can be noisy with discriminative patterns confined to certain regions in the graph only. In this work, we study the problem of attention-based graph classification . The use of attention allows us to focus on small but informative parts of the graph, avoiding noise in the rest of the graph. We present a novel RNN model, called the Graph Attention Model (GAM), that processes only a portion of the graph by adaptively selecting a sequence of “informative” nodes. Experimental results on multiple real-world datasets show that the proposed method is competitive against various well-known methods in graph classification even though our method is limited to only a portion of the graph.

This repository provides an implementation for GAM as described in the paper:

Graph Classification using Structural Attention. John Boaz Lee, Ryan Rossi, and Xiangnan Kong KDD, 2018. [Paper]

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx           2.4
tqdm               4.28.1
numpy              1.15.4
pandas             0.23.4
texttable          1.5.0
argparse           1.1.0
sklearn            0.20.0
torch              1.2.0.
torchvision        0.3.0

Datasets

The code takes graphs for training from an input folder where each graph is stored as a JSON. Graphs used for testing are also stored as JSON files. Every node id, node label and class has to be indexed from 0. Keys of dictionaries and nested dictionaries are stored strings in order to make JSON serialization possible.

For example these JSON files have the following key-value structure:

{"target": 1,
 "edges": [[0, 1], [0, 4], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]],
 "labels": {"0": 2, "1": 3, "2": 2, "3": 3, "4": 4},
 "inverse_labels": {"2": [0, 2], "3": [1, 3], "4": [4]}}

The **target key** has an integer value, which is the ID of the target class (e.g. Carcinogenicity). The **edges key** has an edge list value for the graph of interest. The **labels key** has a dictonary value for each node, these labels are stored as key-value pairs (e.g. node - atom pair). The **inverse_labels key** has a key for each node label and the values are lists containing the nodes that have a specific node label.

Options

Training a GAM model is handled by the src/main.py script which provides the following command line arguments.

Input and output options

  --train-graph-folder   STR    Training graphs folder.      Default is `input/train/`.
  --test-graph-folder    STR    Testing graphs folder.       Default is `input/test/`.
  --prediction-path      STR    Path to store labels.        Default is `output/erdos_predictions.csv`.
  --log-path             STR    Log json path.               Default is `logs/erdos_gam_logs.json`. 

Model options

  --repetitions          INT         Number of scoring runs.                  Default is 10. 
  --batch-size           INT         Number of graphs processed per batch.    Default is 32. 
  --time                 INT         Time budget.                             Default is 20. 
  --step-dimensions      INT         Neurons in step layer.                   Default is 32. 
  --combined-dimensions  INT         Neurons in shared layer.                 Default is 64. 
  --epochs               INT         Number of GAM training epochs.           Default is 10. 
  --learning-rate        FLOAT       Learning rate.                           Default is 0.001.
  --gamma                FLOAT       Discount rate.                           Default is 0.99. 
  --weight-decay         FLOAT       Weight decay.                            Default is 10^-5. 

Examples

The following commands learn a neural network, make predictions, create logs, and write the latter ones to disk.

Training a GAM model on the default dataset. Saving predictions and logs at default paths.

python src/main.py

Training a GAM model for a 100 epochs with a batch size of 512.

python src/main.py --epochs 100 --batch-size 512

Setting a high time budget for the agent.

python src/main.py --time 128

Training a model with some custom learning rate and epoch number.

python src/main.py --learning-rate 0.001 --epochs 200

License


Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context Code in both PyTorch and TensorFlow

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Jan 06, 2023
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
Code for MarioNette: Self-Supervised Sprite Learning, in NeurIPS 2021

MarioNette | Webpage | Paper | Video MarioNette: Self-Supervised Sprite Learning Dmitriy Smirnov, Michaël Gharbi, Matthew Fisher, Vitor Guizilini, Ale

Dima Smirnov 28 Nov 18, 2022
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 168 Dec 28, 2022
Laplacian Score-regularized Concrete Autoencoders

Laplacian Score-regularized Concrete Autoencoders Requirements: torch = 1.9 scikit-learn = 0.24 omegaconf = 2.0.6 scipy = 1.6.0 matplotlib How to

JS 6 Dec 07, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
Blender Add-On for slicing meshes with planes

MeshSlicer Blender Add-On for slicing meshes with multiple overlapping planes at once. This is a simple Blender addon to slice a silmple mesh with mul

52 Dec 12, 2022
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
내가 보려고 정리한 <프로그래밍 기초 Ⅰ> / organized for me

Programming-Basics 프로그래밍 기초 Ⅰ 아카이브 Do it! 점프 투 파이썬 주차 강의주제 비고 1주차 Syllabus 2주차 자료형 - 숫자형 3주차 자료형 - 문자열형 4주차 입력과 출력 5주차 제어문 - 조건문 if 6주차 제어문 - 반복문 whil

KIMMINSEO 1 Mar 07, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
SeMask: Semantically Masked Transformers for Semantic Segmentation.

SeMask: Semantically Masked Transformers Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton, Humphrey Shi This repo co

Picsart AI Research (PAIR) 186 Dec 30, 2022
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
i3DMM: Deep Implicit 3D Morphable Model of Human Heads

i3DMM: Deep Implicit 3D Morphable Model of Human Heads CVPR 2021 (Oral) Arxiv | Poject Page This project is the official implementation our work, i3DM

Tarun Yenamandra 60 Jan 03, 2023
:fire: 2D and 3D Face alignment library build using pytorch

Face Recognition Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D an

Adrian Bulat 6k Dec 31, 2022