Simultaneous Detection and Segmentation

Overview

##Simultaneous Detection and Segmentation

This is code for the ECCV Paper:
Simultaneous Detection and Segmentation
Bharath Hariharan, Pablo Arbelaez, Ross Girshick, Jitendra Malik
To appear in ECCV, 2014.

###Installation

  • Installing caffe: The code comes bundled with a version of caffe that we have modified slightly for SDS. (These modifications might be merged into the public caffe version sometime in the future). To install caffe, follow the instructions on the caffe webpage. (You'll have to install some pre-requisites). After installing all prerequisites, cd into extern/caffe and do make caffe.
    After you have made caffe, you will also need to do make matcaffe.

  • Downloading other external dependencies (MCG and liblinear): The extern folder has a script that downloads MCG and liblinear and compiles liblinear. After running the script, cd into extern/MCG-PreTrained and change the path in root_dir.m to the path to the MCG-PreTrained directory.

  • Starting MATLAB: Start MATLAB and call startup_sds from the main SDS directory. This will compile all mexes in MCG and liblinear, and add all paths.

    A few possible issues related to Caffe:

    • You may need to add the path to CUDA libraries (usually in /usr/local/cuda/lib64) to LD_LIBRARY_PATH before starting MATLAB.
    • When running the code, if you get an error saying: /usr/lib/x86_64-linux-gnu/libharfbuzz.so.0: undefined symbol: FT_Face_GetCharVariantIndex, try adding /usr/lib/x86_64-linux-gnu/libfreetype.so.6(or the equivalent library that your system may have) to the LD_PRELOAD environment variable before starting MATLAB.

###Using Pre-computed results To get started you can look at precomputed results. Download the precomputed results from this ftp link: ftp://ftp.cs.berkeley.edu/pub/projects/vision/sds_precomputed_results.tar.gz and untar it. The precomputed results contain results on VOC2012 val images (SDS, detection and segmentation). You can visualize the precomputed results using the function visualize_precomputed_results.m: visualize_precomputed_results('/path/to/precomputed/results', '/path/to/VOC2012/VOCdevkit/VOC2012/JPEGImages', categ_id);
Here categ_id is the number of the category, for example 15 for person.

Note that you do not need to install Caffe or any of the external dependencies above if you want to simply visualize or use precomputed results.

###Testing Pre-trained models

Download the pretrained models from this ftp link: ftp://ftp.cs.berkeley.edu/pub/projects/vision/sds_pretrained_models.tar.gz and untar them in the main SDS directory.

demo_sds.m is a simple demo that uses the precomputed models to show the outputs we get on a single image. It takes no arguments. It runs the trained models on an example image and displays the detections for the person category. This function is a wrapper around the main function, which is called imagelist_to_sds.m.

###Benchmarking and evaluation

You can also run the benchmark demo, demo_sds_benchmark, which tests our pipeline on a small 100 image subset of VOC2012 val and then evaluates for the person category. You can call it as follows:
demo_sds_benchmark('/path/to/VOC2012/VOCdevkit/VOC2012/JPEGImages/', '/path/to/cachedir', '/path/to/SBD');
Here the cachedir is a directory where intermediate results will be stored. The function also requires the SBD (Semantic Boundaries Dataset), which you can get here. The function does the evaluation for both before refinement and after refinement, and reports an APr of 59.9 in the first case and 66.8 in the second case.

The main function for running the benchmark is evaluation/run_benchmark.m. demo_sds_benchmark should point you to how to run the benchmark.

###Evaluating on detection and segmentation

  • Detection: Look at imagelist_to_det.m to see how to produce a bounding box detection output. In summary, after computing scores on all regions, we use misc/box_nms.m to non-max suppress the boxes using box overlap. misc/write_test_boxes then writes the boxes out to a file that you can submit to PASCAL.

  • Semantic segmentation: Look at imagelist_to_seg.m to see how we produce a semantic segmentation output. In summary, after we compute scores on all regions, we do misc/region_nms.m to non-max suppress boxes, and use misc/get_top_regions.m to get the top regions per category. For our experiments, we picked the top 5K regions for seg val and seg test. Then we call paste_segments: [local_ids, labels, scores2] = paste_segments(topchosen, scores, region_meta_info, 2, 10, -1); topchosen is the first output of get_top_regions.m. These parameters above were tuned on seg val 2011. This function will pick out the segments to paste. To do the actual pasting, use create_pasted_segmentations (if you don't want any refinement) or create_pasted_segmentations_refined (if you want refinement). Refinement is a bit slower but works ~1 point better.

###SDS results format If you want to do more with our results, you may want to understand how we represent our results.

  • Representing region candidates: Because we work with close to 2000 region candidates, saving them as full image-sized masks uses up a lot of space and requires a lot of memory to process. Instead, we save these region candidates using a superpixel representation: we save a superpixel map, containing the superpixel id for each pixel in the image, and we represent each region as a binary vector indicating which superpixels are present in the region. To allow this superpixel representation to be accessible to Caffe, we
  • save the superpixel map as a text file, the first two numbers in which represent the size of the image and the rest of the file contains the superpixel ids of the pixels in MATLAB's column-major order (i.e, we first store the superpixel ids of the first column, then the second column and so on).
  • stack the representation of each region as a matrix (each column representing a region) and save it as a png image.

read_sprep can read this representation into matlab.

  • Representing detections: After the regions have been scored and non-max suppressed, we store the chosen regions as a cell array, one cell per category. Each cell is itself a cell array, with as many cells as there are images, and each cell containing the region id of the chosen regions. The scores are stored in a separate cell array.

  • Representing refined detections: After refinement, the refined regions are stored as binary matrices in mat files, one for each image. The refined regions for different categories are stored in different directories

###Retraining region classifiers

To retrain region classifiers, you first need to save features for all regions including ground truth. You can look at the function setup_svm_training.m. This function will save features and return a region_meta_info struct, which has in it the overlaps of all the regions with all the ground truth. The function expects a list of images, a number of paths to save stuff in, and a path to the ground truth (SBD).

Once the features are saved you can use the region_classification/train_svms.m function to train the detectors. You can also train refinement models for each category using refinement/train_refiner.m

###Retraining the network To retrain the network you will have to use caffe. You need two things: a prototxt specifying the architecture, and a window file specifying the data.

  • Window file: Writing the window file requires you to make a choice between using box overlap to define ground truth, or using region overlap to define ground truth. In the former case, use feature_extractor/make_window_file_box.m and in the latter use feature_extractor/make_window_file_box.m. Both functions require as input the image list, region_meta_info (output of preprocessing/preprocess_mcg_candidates; check setup_svm_training to see how to call it), sptextdir, regspimgdir (specifying the superpixels and regions) and the filename in which the output should go.

  • Prototxt: There are 3 prototxts that figure during training. One specifies the solver, and points to the other two: one for training and the other for testing. Training a single pathway network for boxes can be done with the window_train and window_val, a single pathway network on regions can be done using masked_window_train and masked_window_val, and a two pathway network (net C) can be trained using piwindow_train and piwindow_val. (Here "pi" refers to the architecture of the network, which looks like the capital greek pi.) The train and val prototxts also specify which window file to use. The solver prototxt specifies the path to the train and val prototxts. It also specifies where the snapshots are saved. Make sure that path can be saved to.

  • Initialization: A final requirement for finetuning is to have an initial network, and also the imagenet mean. The latter you can get by running extern/caffe/data/ilsvrc12/get_ilsvrc_aux.sh The initial network is the B network for net C. For everything else, it is the caffe reference imagenet model, which you can get by running extern/caffe/examples/imagenet/get_caffe_reference_imagenet_model.sh

  • Finetuning: cd into caffe and use the following command to train the network (replace caffe_reference_imagenet_model by the appropriate initialization):
    GLOG_logtostderr=1 ./build/tools/finetune_net.bin ../prototxts/pascal_finetune_solver.prototxt ./examples/imagenet/caffe_reference_imagenet_model 2>&1 | tee logdir/log.txt
    Finally, extracting features requires a network with the two-pathway architecture. If you trained the box and region pathway separately, you can stitch them together using feature_extractor/combine_box_region_nets.m

Owner
Bharath Hariharan
Bharath Hariharan
Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

11 Jan 09, 2022
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
Automatic Video Captioning Evaluation Metric --- EMScore

Automatic Video Captioning Evaluation Metric --- EMScore Overview For an illustration, EMScore can be computed as: Installation modify the encode_text

Yaya Shi 17 Nov 28, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196

img_sussifier A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196 Examples How to use install python pip i

41 Sep 30, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
A PyTorch Implementation of Neural IMage Assessment

NIMA: Neural IMage Assessment This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Proc

yunxiaos 418 Dec 29, 2022
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation

CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT

USC ISI I2 85 Dec 12, 2022
Code for "Single-view robot pose and joint angle estimation via render & compare", CVPR 2021 (Oral).

Single-view robot pose and joint angle estimation via render & compare Yann Labbé, Justin Carpentier, Mathieu Aubry, Josef Sivic CVPR: Conference on C

Yann Labbé 51 Oct 14, 2022
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Alpha-Zero - Telegram Group Manager Bot Written In Python Using Pyrogram

✨ Alpha Zero Bot ✨ Telegram Group Manager Bot + Userbot Written In Python Using

1 Feb 17, 2022
LowRankModels.jl is a julia package for modeling and fitting generalized low rank models.

LowRankModels.jl LowRankModels.jl is a Julia package for modeling and fitting generalized low rank models (GLRMs). GLRMs model a data array by a low r

Madeleine Udell 183 Dec 17, 2022
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.

KK Blender Shader Pack A plugin and a shader to get you started with setting up an exported Koikatsu character in Blender. The plugin is a Blender add

166 Jan 01, 2023