An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

Overview

GLOM - Pytorch (wip)

An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns) for emergent part-whole heirarchies from data.

Citations

@misc{hinton2021represent,
    title   = {How to represent part-whole hierarchies in a neural network}, 
    author  = {Geoffrey Hinton},
    year    = {2021},
    eprint  = {2102.12627},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Comments
  • help

    help

    Hello, when I tried to reproduce your model, I got this error. I'm not sure how to correct it, can y help me?

    Traceback (most recent call last): File "main.py", line 172, in outputs = custom_model(images,iters = 12) File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "/root/class/glom_pytorch/glom_pytorch.py", line 109, in forward consensus = self.attention(levels) File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 727, in call_impl result = self.forward(*input, **kwargs) File "/root/class/glom_pytorch/glom_pytorch.py", line 49, in forward sim.masked_fill(self_mask, TOKEN_ATTEND_SELF_VALUE) RuntimeError: Expected object of scalar type Bool but got scalar type Float for argument #2 'mask' in call to th_masked_fill_bool

    opened by DDxk369 1
  • Levels token

    Levels token

    Hello, thank you for your good work. I was trying to implement the idea you shared in this todo:

    https://github.com/lucidrains/glom-pytorch/projects/1#card-56284841

    The text reads: allow each level to be represented by a list of tokens, updated with attention, simliar to https://github.com/lucidrains/transformer-in-transformer

    I was going to implement it with a simple token at each level, but I was wondering if you had any suggestion on how to implement it correctly. Thank you.

    opened by zenos4mbu 0
  • Implementing geometric mean for consensus opinion/levels_mean

    Implementing geometric mean for consensus opinion/levels_mean

    Hi, I'm trying to implement the consensus opinion (levels_mean) as a geometric mean of the top-down predictions, bottom-up predictions, attention-weighted average of same-level embeddings, and embeddings of the previous time step as described by the original paper. Any ideas on how the weights should be set?

    At first I thought this could be a learnable parameter, but section 9.1 reads

    For interpreting a static image with no temporal context, the weights used for this weighted geometric mean need to change during the iterations that occur after a new fixation.

    which leads me to believe that these might need to be outputted on the fly a la vanilla attention as opposed to being learned. Maybe an MLP that takes in the four source embeddings and outputs four scalars as weights?

    opened by ryan-caesar-ramos 0
  • Classification

    Classification

    Hi @lucidrains ! Do you have any idea/insight on how to supervise classification (let's say, for example, MNIST digits classification) after having trained GLOM in an unsupervised way as a denoising autoencoder? In the paper that seems to be the final goal. However, it's not clear to me which columns and/or levels should be used for the classification. Also, since GLOM it's dealing with patches, how can single black patches vote towards a certain digit?

    In other words, after training GLOM as a denoising autoencoder on MNIST, what we have is:

    • p X p columns, where p is the number of patches per dimension (e.g. 7X7=49 patches)
    • 6 levels for each column, where the top-most levels should in theory represent higher-level entities, so it seems natural to search for the digit information in these layers
    • 6*2=12 iterations, to allow for information to be passed by both top-down and bottom-up networks

    Just by applying dimensionality reduction on the top-most level at different iterations does not seem enough to make the digit clusters emerge. So I'm wondering if you (or anybody else) have some insights on this. Cheers!

    opened by A7ocin 1
  • Bug in forward?

    Bug in forward?

    Hello, thank you for making this code available! I think there could be a potential bug in the first line of the forward function:

    b, h, w, _, device = *img.shape, img.device

    but the input image shape is of kind b c h w, so it could be fixed by replacing it with

    b, _, h, w, device = *img.shape, img.device

    Am I wrong?

    opened by A7ocin 9
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Yue Gao 139 Dec 14, 2022
Detector for Log4Shell exploitation attempts

log4shell-detector Detector for Log4Shell exploitation attempts Idea The problem with the log4j CVE-2021-44228 exploitation is that the string can be

Florian Roth 729 Dec 25, 2022
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"

UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step

Frederic Zhang 109 Dec 20, 2022
HTSeq is a Python library to facilitate processing and analysis of data from high-throughput sequencing (HTS) experiments.

HTSeq DEVS: https://github.com/htseq/htseq DOCS: https://htseq.readthedocs.io A Python library to facilitate programmatic analysis of data from high-t

HTSeq 57 Dec 20, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Dec 31, 2022
Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Elias Kassapis 31 Nov 22, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is avai

26 Dec 13, 2022
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
Faster RCNN pytorch windows

Faster-RCNN-pytorch-windows Faster RCNN implementation with pytorch for windows Open cmd, compile this comands: cd lib python setup.py build develop T

Hwa-Rang Kim 1 Nov 11, 2022
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
2 Jul 19, 2022
Deep Distributed Control of Port-Hamiltonian Systems

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH) This repository is associated to the paper [1] and it contains: The full p

Dependable Control and Decision group - EPFL 3 Aug 17, 2022
Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the ou

The AI Guy 1.1k Dec 29, 2022