BookNLP, a natural language processing pipeline for books

Overview

BookNLP

BookNLP is a natural language processing pipeline that scales to books and other long documents (in English), including:

  • Part-of-speech tagging
  • Dependency parsing
  • Entity recognition
  • Character name clustering (e.g., "Tom", "Tom Sawyer", "Mr. Sawyer", "Thomas Sawyer" -> TOM_SAWYER) and coreference resolution
  • Quotation speaker identification
  • Supersense tagging (e.g., "animal", "artifact", "body", "cognition", etc.)
  • Event tagging
  • Referential gender inference (TOM_SAWYER -> he/him/his)

BookNLP ships with two models, both with identical architectures but different underlying BERT sizes. The larger and more accurate big model is fit for GPUs and multi-core computers; the faster small model is more appropriate for personal computers. See the table below for a comparison of the difference, both in terms of overall speed and in accuracy for the tasks that BookNLP performs.

Small Big
Entity tagging (F1) 88.2 90.0
Supersense tagging (F1) 73.2 76.2
Event tagging (F1) 70.6 74.1
Coreference resolution (Avg. F1) 76.4 79.0
Speaker attribution (B3) 86.4 89.9
CPU time, 2019 MacBook Pro (mins.)* 3.6 15.4
CPU time, 10-core server (mins.)* 2.4 5.2
GPU time, Titan RTX (mins.)* 2.1 2.2

*timings measure speed to run BookNLP on a sample book of The Secret Garden (99K tokens). To explore running BookNLP in Google Colab on a GPU, see this notebook.

Installation

conda create --name booknlp python=3.7
conda activate booknlp
  • If using a GPU, install pytorch for your system and CUDA version by following installation instructions on https://pytorch.org.

  • Install booknlp and download Spacy model.

pip install booknlp
python -m spacy download en_core_web_sm

Usage

from booknlp.booknlp import BookNLP

model_params={
		"pipeline":"entity,quote,supersense,event,coref", 
		"model":"big"
	}
	
booknlp=BookNLP("en", model_params)

# Input file to process
input_file="input_dir/bartleby_the_scrivener.txt"

# Output directory to store resulting files in
output_directory="output_dir/bartleby/"

# File within this directory will be named ${book_id}.entities, ${book_id}.tokens, etc.
book_id="bartleby"

booknlp.process(input_file, output_directory, book_id)

This runs the full BookNLP pipeline; you are able to run only some elements of the pipeline (to cut down on computational time) by specifying them in that parameter (e.g., to only run entity tagging and event tagging, change model_params above to include "pipeline":"entity,event").

This process creates the directory output_dir/bartleby and generates the following files:

  • bartleby/bartleby.tokens -- This encodes core word-level information. Each row corresponds to one token and includes the following information:

    • paragraph ID
    • sentence ID
    • token ID within sentence
    • token ID within document
    • word
    • lemma
    • byte onset within original document
    • byte offset within original document
    • POS tag
    • dependency relation
    • token ID within document of syntactic head
    • event
  • bartleby/bartleby.entities -- This represents the typed entities within the document (e.g., people and places), along with their coreference.

    • coreference ID (unique entity ID)
    • start token ID within document
    • end token ID within document
    • NOM (nominal), PROP (proper), or PRON (pronoun)
    • PER (person), LOC (location), FAC (facility), GPE (geo-political entity), VEH (vehicle), ORG (organization)
    • text of entity
  • bartleby/bartleby.supersense -- This stores information from supersense tagging.

    • start token ID within document
    • end token ID within document
    • supersense category (verb.cognition, verb.communication, noun.artifact, etc.)
  • bartleby/bartleby.quotes -- This stores information about the quotations in the document, along with the speaker. In a sentence like "'Yes', she said", where she -> ELIZABETH_BENNETT, "she" is the attributed mention of the quotation 'Yes', and is coreferent with the unique entity ELIZABETH_BENNETT.

    • start token ID within document of quotation
    • end token ID within document of quotation
    • start token ID within document of attributed mention
    • end token ID within document of attributed mention
    • attributed mention text
    • coreference ID (unique entity ID) of attributed mention
    • quotation text
  • bartleby/bartleby.book

JSON file providing information about all characters mentioned more than 1 time in the book, including their proper/common/pronominal references, referential gender, actions for the which they are the agent and patient, objects they possess, and modifiers.

  • bartleby/bartleby.book.html

HTML file containing a.) the full text of the book along with annotations for entities, coreference, and speaker attribution and b.) a list of the named characters and major entity catgories (FAC, GPE, LOC, etc.).

Annotations

Entity annotations

The entity annotation layer covers six of the ACE 2005 categories in text:

  • People (PER): Tom Sawyer, her daughter
  • Facilities (FAC): the house, the kitchen
  • Geo-political entities (GPE): London, the village
  • Locations (LOC): the forest, the river
  • Vehicles (VEH): the ship, the car
  • Organizations (ORG): the army, the Church

The targets of annotation here include both named entities (e.g., Tom Sawyer), common entities (the boy) and pronouns (he). These entities can be nested, as in the following:

drawing

For more, see: David Bamman, Sejal Popat and Sheng Shen, "An Annotated Dataset of Literary Entities," NAACL 2019.

The entity tagging model within BookNLP is trained on an annotated dataset of 968K tokens, including the public domain materials in LitBank and a new dataset of ~500 contemporary books, including bestsellers, Pulitzer Prize winners, works by Black authors, global Anglophone books, and genre fiction (article forthcoming).

Event annotations

The event layer identifies events with asserted realis (depicted as actually taking place, with specific participants at a specific time) -- as opposed to events with other epistemic modalities (hypotheticals, future events, extradiegetic summaries by the narrator).

Text Events Source
My father’s eyes had closed upon the light of this world six months, when mine opened on it. {closed, opened} Dickens, David Copperfield
Call me Ishmael. {} Melville, Moby Dick
His sister was a tall, strong girl, and she walked rapidly and resolutely, as if she knew exactly where she was going and what she was going to do next. {walked} Cather, O Pioneers

For more, see: Matt Sims, Jong Ho Park and David Bamman, "Literary Event Detection," ACL 2019.

The event tagging model is trained on event annotations within LitBank. The small model above makes use of a distillation process, by training on the predictions made by the big model for a collection of contemporary texts.

Supersense tagging

Supersense tagging provides coarse semantic information for a sentence by tagging spans with 41 lexical semantic categories drawn from WordNet, spanning both nouns (including plant, animal, food, feeling, and artifact) and verbs (including cognition, communication, motion, etc.)

Example Source
The [station wagons]artifact [arrived]motion at [noon]time, a long shining [line]group that [coursed]motion through the [west campus]location. Delillo, White Noise

The BookNLP tagger is trained on SemCor.

.

Character name clustering and coreference

The coreference layer covers the six ACE entity categories outlined above (people, facilities, locations, geo-political entities, organizations and vehicles) and is trained on LitBank and PreCo.

Example Source
One may as well begin with [Helen]x's letters to [[her]x sister]y Forster, Howard's End

Accurate coreference at the scale of a book-length document is still an open research problem, and attempting full coreference -- where any named entity (Elizabeth), common entity (her sister, his daughter) and pronoun (she) can corefer -- tends to erroneously conflate multiple distinct entities into one. By default, BookNLP addresses this by first carrying out character name clustering (grouping "Tom", "Tom Sawyer" and "Mr. Sawyer" into a single entity), and then allowing pronouns to corefer with either named entities (Tom) or common entities (the boy), but disallowing common entities from co-referring to named entities. To turn off this mode and carry out full corefernce, add pronominalCorefOnly=False to the model_params parameters dictionary above (but be sure to inspect the output!).

For more on the coreference criteria used in this work, see David Bamman, Olivia Lewke and Anya Mansoor (2020), "An Annotated Dataset of Coreference in English Literature", LREC.

Referential gender inference

BookNLP infers the referential gender of characters by associating them with the pronouns (he/him/his, she/her, they/them, xe/xem/xyr/xir, etc.) used to refer to them in the context of the story. This method encodes several assumptions:

  • BookNLP describes the referential gender of characters, and not their gender identity. Characters are described by the pronouns used to refer to them (e.g., he/him, she/her) rather than labels like "M/F".

  • Prior information on the alignment of names with referential gender (e.g., from government records or larger background datasets) can be used to provide some information to inform this process if desired (e.g., "Tom" is often associated with he/him in pre-1923 English texts). Name information, however, should not be uniquely determinative, but rather should be sensitive to the context in which it is used (e.g., "Tom" in the book "Tom and Some Other Girls", where Tom is aligned with she/her). By default, BookNLP uses prior information on the alignment of proper names and honorifics with pronouns drawn from ~15K works from Project Gutenberg; this prior information can be ignored by setting referential_gender_hyperparameterFile:None in the model_params file. Alternative priors can be used by passing the pathname to a prior file (in the same format as english/data/gutenberg_prop_gender_terms.txt) to this parameter.

  • Users should be free to define the referential gender categories used here. The default set of categories is {he, him, his}, {she, her}, {they, them, their}, {xe, xem, xyr, xir}, and {ze, zem, zir, hir}. To specify a different set of categories, update the model_params setting to define them: referential_gender_cats: [ ["he", "him", "his"], ["she", "her"], ["they", "them", "their"], ["xe", "xem", "xyr", "xir"], ["ze", "zem", "zir", "hir"] ]

Speaker attribution

The speaker attribution model identifies all instances of direct speech in the text and attributes it to its speaker.

Quote Speaker Source
— Come up , Kinch ! Come up , you fearful jesuit ! Buck_Mulligan-0 Joyce, Ulysses
‘ Oh dear ! Oh dear ! I shall be late ! ’ The_White_Rabbit-4 Carroll, Alice in Wonderland
“ Do n't put your feet up there , Huckleberry ; ” Miss_Watson-26 Twain, Huckleberry Finn

This model is trained on speaker attribution data in LitBank. For more on the quotation annotations, see this paper.

Part-of-speech tagging and dependency parsing

BookNLP uses Spacy for part-of-speech tagging and dependency parsing.

Acknowledgments

BookNLP is supported by the National Endowment for the Humanities (HAA-271654-20) and the National Science Foundation (IIS-1942591).
Official Stanford NLP Python Library for Many Human Languages

Official Stanford NLP Python Library for Many Human Languages

Stanford NLP 6.4k Jan 02, 2023
TalkNet: Audio-visual active speaker detection Model

Is someone talking? TalkNet: Audio-visual active speaker detection Model This repository contains the code for our ACM MM 2021 paper, TalkNet, an acti

142 Dec 14, 2022
A Flask Sentiment Analysis API, with visual implementation

The Sentiment Analysis Api was created using python flask module,it allows users to parse a text or sentence throught the (?text) arguement, then view the sentiment analysis of that sentence. It can

Ifechukwudeni Oweh 10 Jul 17, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
Unofficial Python library for using the Polish Wordnet (plWordNet / Słowosieć)

Polish Wordnet Python library Simple, easy-to-use and reasonably fast library for using the Słowosieć (also known as PlWordNet) - a lexico-semantic da

Max Adamski 12 Dec 23, 2022
wxPython app for converting encodings, modifying and fixing SRT files

Subtitle Converter Program za obradu srt i txt fajlova. Requirements: Python version 3.8 wxPython version 4.1.0 or newer Libraries: srt, PyDispatcher

4 Nov 25, 2022
A Japanese tokenizer based on recurrent neural networks

Nagisa is a python module for Japanese word segmentation/POS-tagging. It is designed to be a simple and easy-to-use tool. This tool has the following

325 Jan 05, 2023
ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset.

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset. Through its Python API, the pretrained model can be fine-tuned on any protein-related task in

241 Jan 04, 2023
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

The Easy-to-use Dialogue Response Selection Toolkit for Researchers

GMFTBY 32 Nov 13, 2022
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training

GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training Code and model from our AAAI 2021 paper

Amazon Web Services - Labs 83 Jan 09, 2023
A text file containing 479k English words for all your dictionary/word-based projects e.g: auto-completion / autosuggestion

List Of English Words A text file containing over 466k English words. While searching for a list of english words (for an auto-complete tutorial) I fo

dwyl 8.5k Jan 03, 2023
New Modeling The Background CodeBase

Modeling the Background for Incremental Learning in Semantic Segmentation This is the updated official PyTorch implementation of our work: "Modeling t

Fabio Cermelli 9 Dec 28, 2022
PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation

SITT The repo contains official PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation. Authors: Boyi Li Yin Cui T

Boyi Li 52 Jan 05, 2023
Flaxformer: transformer architectures in JAX/Flax

Flaxformer: transformer architectures in JAX/Flax Flaxformer is a transformer library for primarily NLP and multimodal research at Google. It is used

Google 114 Dec 29, 2022
Khandakar Muhtasim Ferdous Ruhan 1 Dec 30, 2021
Code for our paper "Transfer Learning for Sequence Generation: from Single-source to Multi-source" in ACL 2021.

TRICE: a task-agnostic transferring framework for multi-source sequence generation This is the source code of our work Transfer Learning for Sequence

THUNLP-MT 9 Jun 27, 2022
An automated program that helps customers of Pizza Palour place their pizza orders

PIzza_Order_Assistant Introduction An automated program that helps customers of Pizza Palour place their pizza orders. The program uses voice commands

Tindi Sommers 1 Dec 26, 2021
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
A paper list of pre-trained language models (PLMs).

Large-scale pre-trained language models (PLMs) such as BERT and GPT have achieved great success and become a milestone in NLP.

RUCAIBox 124 Jan 02, 2023
Natural Language Processing with transformers

we want to create a repo to illustrate usage of transformers in chinese

Datawhale 763 Dec 27, 2022