Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Related tags

Deep LearningGADA
Overview

Geometrically Adaptive Dictionary Attack on Face Recognition

This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV2022).

Getting started

Dependencies

The code of GADA uses various packages such as Python 3.7, Pytorch 1.6.0, cython=0.29.21, and it is easy to install them by copying the existing environment to the current system to install them easily.

We have saved the conda environment for both Windows and Ubuntu, and you can copy the conda environment to the current system. You can install the conda environment by entering the following command at the conda prompt.

conda env create -f GADA_ubuntu.yml

After setting the environment, you may need to compile the 3D renderer by entering the command.

At the '_3DDFA_V2\Sim3DR' path

python setup.py build_ext --inplace

Since 3D Renderer has already been compiled on Windows and Ubuntu, there may be no problem in running the experiment without executing the above command.

Pretrained face recognition models

You can download the pretrained face recogntion models from face.evoLVe and CurricularFace

After downloading the checkpoint files, place 'backbone_ir50_ms1m_epoch120.pth' into '/checkpoint/ms1m-ir50/' and 'CurricularFace_Backbone.pth' into '/checkpoint/'

Dataset

You can download test image sequences for the LFW and CPLFW datasets from the following links.

LFW test image sequence

CPLFW test image sequence

Place them into the root folder of the project.

Each image sequence has 500 image pairs for dodging and impersonation attack.

These images are curated from the aligned face datasets provided by face.evoLVe.

Usage

You can perform an attack experiment by entering the following command.

python attack.py --model=2 --attack=EAGD --dataset=LFW

The model argument is the index of the target facial recognition model.

1: CurricularFace ResNet-100, 2: ArcFace ResNet-50, 3: FaceNet

The attack argument indicates the attack method.

HSJA, SO, EA, EAD, EAG, EAGD, EAG, EAGDR, EAGDO, SFA, SFAD, SFAG, SFAGD

If --targeted is given as an execution argument, impersonation attack is performed. If no argument is given, dodging attack is performed by default.

The dataset argument sets which test dataset to use and supports LFW and CPLFW.

If you want to enable stateful detection as a defense, pass the --defense=SD argument to the command line.

When an experiment is completed for 500 test images, a 'Dataset_NumImages_targeted_attackname_targetmodel_defense_.pth' file is created in the results folder like 'CPLFW_500_1_EVGD_IR_50_gaussian_.pth'.

Using plotter.py, you can load the above saved file and print various results, such as the l2 norm of perturbation at 1000, 2000, 5000, and 10000 steps, the average number of queries until the l2 norm of perturbation becomes 2 or 4, adversarial examples, etc.

Citation

If you find this work useful, please consider citing our paper :) We provide a BibTeX entry of our paper below:

    @article{byun2021geometrically,
    title={Geometrically Adaptive Dictionary Attack on Face Recognition},
    author={Byun, Junyoung and Go, Hyojun and Kim, Changick},
    journal={arXiv preprint arXiv:2111.04371},
    year={2021}
    }

Acknowledgement

Code repository for Self-supervised Structure-sensitive Learning, CVPR'17

Self-supervised Structure-sensitive Learning (SSL) Ke Gong, Xiaodan Liang, Xiaohui Shen, Liang Lin, "Look into Person: Self-supervised Structure-sensi

Clay Gong 219 Dec 29, 2022
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
Train a state-of-the-art yolov3 object detector from scratch!

TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c

AntonMu 616 Jan 08, 2023
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022
OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
Person Re-identification

Person Re-identification Final project of Computer Vision Table of content Person Re-identification Table of content Students: Proposed method Dataset

Nguyễn Hoàng Quân 4 Jun 17, 2021
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimization"

Riggable 3D Face Reconstruction via In-Network Optimization Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimizati

130 Jan 02, 2023
Simple-System-Convert--C--F - Simple System Convert With Python

Simple-System-Convert--C--F REQUIREMENTS Python version : 3 HOW TO USE Run the c

Jonathan Santos 2 Feb 16, 2022
VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlatio

0 Aug 10, 2022
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022