Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Related tags

Deep LearningTextReID
Overview

Text Based Person Search with Limited Data

PWC

This is the codebase for our BMVC 2021 paper.

Please bear with me refactoring this codebase after CVPR deadline 😅

Abstract

Text-based person search (TBPS) aims at retrieving a target person from an image gallery with a descriptive text query. Solving such a fine-grained cross-modal retrieval task is challenging, which is further hampered by the lack of large-scale datasets. In this paper, we present a framework with two novel components to handle the problems brought by limited data. Firstly, to fully utilize the existing small-scale benchmarking datasets for more discriminative feature learning, we introduce a cross-modal momentum contrastive learning framework to enrich the training data for a given mini-batch. Secondly, we propose to transfer knowledge learned from existing coarse-grained large-scale datasets containing image-text pairs from drastically different problem domains to compensate for the lack of TBPS training data. A transfer learning method is designed so that useful information can be transferred despite the large domain gap. Armed with these components, our method achieves new state of the art on the CUHK-PEDES dataset with significant improvements over the prior art in terms of Rank-1 and mAP.

Comments
  • Research prepared to obtain a diploma degree in computer and Automation Engineering.

    Research prepared to obtain a diploma degree in computer and Automation Engineering.

    Hello!

    My research focuses on Person search using Visual-Textual Attributes. Having said that, I would like to use your model to assist me in my project, but I have some issues when I finish train and test the model. My problem is trying to write code to run the model to get the same response as the photo. so Can you help me please!

    photo_2022-08-07_18-44-28

    opened by ram7772 6
  • Cannot find test_query and train_query folders

    Cannot find test_query and train_query folders

    Hi @BrandonHanx

    In the ReadMe file, it is mentioned to setup the datasets dir as follows:

    └── cuhkpedes
        ├── annotations
        │   ├── test.json
        │   ├── train.json
        │   └── val.json
        ├── clip_vocab_vit.npy
        └── imgs
            ├── cam_a
            ├── cam_b
            ├── CUHK01
            ├── CUHK03
            ├── Market
            ├── test_query
            └── train_query
    

    After downloading the cuhkpedes data set, we get only the imgs folder, containing cam_a, cam_b and CUHK01 folders. there is no test_query and train_query folders. Also, these folders are not in the repository. Could you provide more information regarding on these folders, more exactly, what kind of information they contain and how they must be set up?

    Also, there are few more folders that are not part of the cuhkpedes, such as CUHK03 and Market. Do we need these data sets to reproduce the results?

    Best regards, liviust

    opened by liviust 5
  • some problem in training and testing

    some problem in training and testing

    Hello

    I have some problem. first: I don't find test_query and train_query file when I get images from [Dr. Shuang Li] second: I have this problem for testing and training.

    image

    opened by ram7772 4
  • Problem about the clip_vocab_vit.npy

    Problem about the clip_vocab_vit.npy

    Hi :) I have a question about the pre-processing document clip_vocab_vit.npy. My understanding is that it contains the tensor of the CLIP-Text-Encoder output corresponding to each word (total 9408). My question is, the output dimension of CLIP-TEXT-ENCODER is 1024, but the tensor dimension of each word in clip_vocab_vit.npy is 512. Is there some other operation in it? Thanks

    opened by Frost-Yang-99 2
  • There is only caption_all.json in the dataset CUHK-PEDES, what are the train.json and test.json in the dataset part

    There is only caption_all.json in the dataset CUHK-PEDES, what are the train.json and test.json in the dataset part

    Describe the bug A clear and concise description of what the bug is.

    To Reproduce Steps to reproduce the behavior:

    1. Go to '...'
    2. Click on '....'
    3. Scroll down to '....'
    4. See error

    Expected behavior A clear and concise description of what you expected to happen.

    Screenshots If applicable, add screenshots to help explain your problem.

    Desktop (please complete the following information):

    • OS: [e.g. iOS]
    • Browser [e.g. chrome, safari]
    • Version [e.g. 22]

    Smartphone (please complete the following information):

    • Device: [e.g. iPhone6]
    • OS: [e.g. iOS8.1]
    • Browser [e.g. stock browser, safari]
    • Version [e.g. 22]

    Additional context Add any other context about the problem here.

    opened by SwimKY 1
Releases(v0.1.1)
Owner
Xiao Han
Ph.D. student @ UoSurrey CVSSP, B.Eng. @ ZJU ISEE
Xiao Han
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
Auto-Encoding Score Distribution Regression for Action Quality Assessment

DAE-AQA It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. 1.Introduction DAE

13 Nov 16, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

基于 bert4keras 的一个baseline 不作任何 数据trick 单模 线上 最高可到 0.7891 # 基础 版 train.py 0.7769 # transformer 各层 cls concat 明神的trick https://xv44586.git

孙永松 7 Dec 28, 2021
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.

scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA

19 Nov 28, 2022
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introdu

OATML 360 Dec 28, 2022
MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

Burak Bagatarhan 12 Mar 29, 2022
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
This repository contains the DendroMap implementation for scalable and interactive exploration of image datasets in machine learning.

DendroMap DendroMap is an interactive tool to explore large-scale image datasets used for machine learning. A deep understanding of your data can be v

DIV Lab 33 Dec 30, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
基于深度强化学习的原神自动钓鱼AI

原神自动钓鱼AI由YOLOX, DQN两部分模型组成。使用迁移学习,半监督学习进行训练。 模型也包含一些使用opencv等传统数字图像处理方法实现的不可学习部分。

4.2k Jan 01, 2023
House_prices_kaggle - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Gurpreet Singh 1 Jan 01, 2022
[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Tube Self-Attention Network (TSA-Net) This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Qu

ShunliWang 18 Dec 23, 2022
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022