Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

Overview

MediumVC

MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utterance i spoken by X). The Ŷi are considered as SSIF. To build SingleVC, we employ a novel data augment strategy: pitch-shifted and duration-remained(PSDR) to produce paired asymmetrical training data. Then, based on pre-trained SingleVC, MediumVC performs an asymmetrical reconstruction task(Ŷi → X̂i). Due to the asymmetrical reconstruction mode, MediumVC achieves more efficient feature decoupling and fusion. Experiments demonstrate MediumVC performs strong robustness for unseen speakers across multiple public datasets. Here is the official implementation of the paper, MediumVC.

The following are the overall model architecture.

Model architecture

For the audio samples, please refer to our demo page. The more converted speeches can be found in "Demo/ConvertedSpeeches/".

Envs

You can install the dependencies with

pip install -r requirements.txt

Speaker Encoder

Dvector is a robust speaker verification (SV) system pre-trained on VoxCeleb1 using GE2E loss, and it produces 256-dim speaker embedding. In our evaluation on multiple datasets(VCTK with 30000 pairs, Librispeech with 30000 pairs and VCC2020 with 10000 pairs), the equal error rates(EERs)and thresholds(THRs) are recorded in Table. Then Dvector with THRs is also employed to calculate SV accuracy(ACC) of pairs produced by MediumVC and other contrast methods for objective evaluation. The more details can access paper.

Dataset VCTK LibriSpeech VCC2020
EER(%)/THR 7.71/0.462 7.95/0.337 1.06/0.432

Vocoder

The HiFi-GAN vocoder is employed to convert log mel-spectrograms to waveforms. The model is trained on universal datasets with 13.93M parameters. Through our evaluation, it can synthesize 22.05 kHz high-fidelity speeches over 4.0 MOS, even in cross-language or noisy environments.

Infer

You can download the pretrained model, and then edit "Any2Any/infer/infer_config.yaml".Test Samples could be organized as "wav22050/$figure$/*.wav".

python Any2Any/infer/infer.py

Train from scratch

Preprocessing

The corpus should be organized as "VCTK22050/$figure$/*.wav", and then edit the config file "Any2Any/pre_feature/preprocess_config.yaml".The output "spk_emb_mel_label.pkl" will be used for training.

python Any2Any/pre_feature/figure_spkemb_mel.py

Training

Please edit the paths of pretrained hifi-model,wav2mel,dvector,SingleVC in config file "Any2Any/config.yaml" at first.

python Any2Any/solver.py
Owner
谷下雨
美中不足
谷下雨
PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

UMS for Multi-turn Response Selection Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utte

Taesun Whang 47 Nov 22, 2022
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation This is a pytorch project for the paper Dynamic Divide-and-Conquer Ad

DV Lab 29 Nov 21, 2022
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten

Patrick Kidger 1.2k Jan 03, 2023
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023