Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

Overview

MediumVC

MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utterance i spoken by X). The Ŷi are considered as SSIF. To build SingleVC, we employ a novel data augment strategy: pitch-shifted and duration-remained(PSDR) to produce paired asymmetrical training data. Then, based on pre-trained SingleVC, MediumVC performs an asymmetrical reconstruction task(Ŷi → X̂i). Due to the asymmetrical reconstruction mode, MediumVC achieves more efficient feature decoupling and fusion. Experiments demonstrate MediumVC performs strong robustness for unseen speakers across multiple public datasets. Here is the official implementation of the paper, MediumVC.

The following are the overall model architecture.

Model architecture

For the audio samples, please refer to our demo page. The more converted speeches can be found in "Demo/ConvertedSpeeches/".

Envs

You can install the dependencies with

pip install -r requirements.txt

Speaker Encoder

Dvector is a robust speaker verification (SV) system pre-trained on VoxCeleb1 using GE2E loss, and it produces 256-dim speaker embedding. In our evaluation on multiple datasets(VCTK with 30000 pairs, Librispeech with 30000 pairs and VCC2020 with 10000 pairs), the equal error rates(EERs)and thresholds(THRs) are recorded in Table. Then Dvector with THRs is also employed to calculate SV accuracy(ACC) of pairs produced by MediumVC and other contrast methods for objective evaluation. The more details can access paper.

Dataset VCTK LibriSpeech VCC2020
EER(%)/THR 7.71/0.462 7.95/0.337 1.06/0.432

Vocoder

The HiFi-GAN vocoder is employed to convert log mel-spectrograms to waveforms. The model is trained on universal datasets with 13.93M parameters. Through our evaluation, it can synthesize 22.05 kHz high-fidelity speeches over 4.0 MOS, even in cross-language or noisy environments.

Infer

You can download the pretrained model, and then edit "Any2Any/infer/infer_config.yaml".Test Samples could be organized as "wav22050/$figure$/*.wav".

python Any2Any/infer/infer.py

Train from scratch

Preprocessing

The corpus should be organized as "VCTK22050/$figure$/*.wav", and then edit the config file "Any2Any/pre_feature/preprocess_config.yaml".The output "spk_emb_mel_label.pkl" will be used for training.

python Any2Any/pre_feature/figure_spkemb_mel.py

Training

Please edit the paths of pretrained hifi-model,wav2mel,dvector,SingleVC in config file "Any2Any/config.yaml" at first.

python Any2Any/solver.py
Owner
谷下雨
美中不足
谷下雨
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Idan Achituve 66 Dec 20, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation

CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c

Deep Learning for HEP 101 Nov 13, 2022
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Davis Rempe 367 Dec 24, 2022
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
Facebook AI Image Similarity Challenge: Descriptor Track

Facebook AI Image Similarity Challenge: Descriptor Track This repository contains the code for our solution to the Facebook AI Image Similarity Challe

Sergio MP 17 Dec 14, 2022
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

InvCompress Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral) Figure: Our framework

96 Nov 30, 2022
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
Codes for the AAAI'22 paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning"

TransZero [arXiv] This repository contains the testing code for the paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning" accepted to

Shiming Chen 52 Jan 01, 2023
A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

A PyTorch Reproduction of HCN Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Ch

Guyue Hu 210 Dec 31, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Sentinel-1 vessel detection model used in the xView3 challenge

sar_vessel_detect Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR

AI2 6 Sep 10, 2022
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022