Code for Understanding Pooling in Graph Neural Networks

Related tags

Deep LearningSRC
Overview

Select, Reduce, Connect

This repository contains the code used for the experiments of:

"Understanding Pooling in Graph Neural Networks"

Setup

Install TensorFlow and other dependencies:

pip install -r requirements.txt

Running experiments

Experiments are found in the following folders:

  • autoencoder/
  • spectral_similarity/
  • graph_classification/

Each folder has a bash script called run_all.sh that will reproduce the results reported in the paper.

To generate the plots and tables that we included in the paper, you can use the plots.py, plots_datasets.py, or tables.py found in the folders.

To run experiments for an individual pooling operator, you can use the run_[OPERATOR NAME].py scripts in each folder.

The pooling operators that we used for the experiments are found in layers/ (trainable) and modules/ (non-trainable). The GNN architectures used in the experiments are found in models/.

The SRCPool class

The core of this repository is the SRCPool class that implements a general interface to create SRC pooling layers with the Keras API.

Our implementation of MinCutPool, DiffPool, LaPool, Top-K, and SAGPool using the SRCPool class can be found in src/layers.

In general, SRC layers compute:

Where is a node equivariant selection function that computes the supernode assignments , is a permutation-invariant function to reduce the supernodes into the new node attributes, and is a permutation-invariant connection function that computes the links between the pooled nodes.

By extending this class, it is possible to create any pooling layer in the SRC framework.

Input

  • X: Tensor of shape ([batch], N, F) representing node features;
  • A: Tensor or SparseTensor of shape ([batch], N, N) representing the adjacency matrix;
  • I: (optional) Tensor of integers with shape (N, ) representing the batch index;

Output

  • X_pool: Tensor of shape ([batch], K, F), representing the node features of the output. K is the number of output nodes and depends on the specific pooling strategy;
  • A_pool: Tensor or SparseTensor of shape ([batch], K, K) representing the adjacency matrix of the output;
  • I_pool: (only if I was given as input) Tensor of integers with shape (K, ) representing the batch index of the output;
  • S_pool: (if return_sel=True) Tensor or SparseTensor representing the supernode assignments;

API

  • pool(X, A, I, **kwargs): pools the graph and returns the reduced node features and adjacency matrix. If the batch index I is not None, a reduced version of I will be returned as well. Any given kwargs will be passed as keyword arguments to select(), reduce() and connect() if any matching key is found. The mandatory arguments of pool() (X, A, and I) must be computed in call() by calling self.get_inputs(inputs).
  • select(X, A, I, **kwargs): computes supernode assignments mapping the nodes of the input graph to the nodes of the output.
  • reduce(X, S, **kwargs): reduces the supernodes to form the nodes of the pooled graph.
  • connect(A, S, **kwargs): connects the reduced supernodes.
  • reduce_index(I, S, **kwargs): helper function to reduce the batch index (only called if I is given as input).

When overriding any function of the API, it is possible to access the true number of nodes of the input (N) as a Tensor in the instance variable self.N (this is populated by self.get_inputs() at the beginning of call()).

Arguments:

  • return_sel: if True, the Tensor used to represent supernode assignments will be returned with X_pool, A_pool, and I_pool;
Owner
Daniele Grattarola
PhD student @ Università della Svizzera italiana
Daniele Grattarola
Finite Element Analysis

FElupe - Finite Element Analysis FElupe is a Python 3.6+ finite element analysis package focussing on the formulation and numerical solution of nonlin

Andreas D. 20 Jan 09, 2023
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
RGB-stacking 🛑 🟩 🔷 for robotic manipulation

RGB-stacking 🛑 🟩 🔷 for robotic manipulation BLOG | PAPER | VIDEO Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes, Alex X. Lee*,

DeepMind 95 Dec 23, 2022
SpinalNet: Deep Neural Network with Gradual Input

SpinalNet: Deep Neural Network with Gradual Input This repository contains scripts for training different variations of the SpinalNet and its counterp

H M Dipu Kabir 142 Dec 30, 2022
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
UFPR-ADMR-v2 Dataset

UFPR-ADMR-v2 Dataset The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), w

Gabriel Salomon 8 Sep 29, 2022
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper

Evaluating the Factual Consistency of Abstractive Text Summarization Authors: Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher Int

Salesforce 165 Dec 21, 2022
A nutritional label for food for thought.

Lexiscore As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional la

Paul Bricman 34 Nov 08, 2022
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn

Antonio M. Sudoso 1 Nov 13, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 04, 2023
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022
Official PyTorch implementation of GDWCT (CVPR 2019, oral)

This repository provides the official code of GDWCT, and it is written in PyTorch. Paper Image-to-Image Translation via Group-wise Deep Whitening-and-

WonwoongCho 135 Dec 02, 2022