TensorLight - A high-level framework for TensorFlow

Overview
TensorLight

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced features that are not yet provided out-of-the-box.

Setup

After cloning the repository, we can install the package locally (for use on our system), with:

$ cd /path/to/tensorlight
$ sudo pip install .

We can also install the package with a symlink, so that changes to the source files will be immediately available to other users of the package on our system:

$ sudo pip install -e .

Guiding Principles

The TensorLight framework is developed under its four core principles:

  • Simplicity: Straight-forward to use for anybody who has already worked with TensorFlow. Especially, no further learning is required regarding how to define a model's graph definition.
  • Compactness: Reduce boilerplate code, while keeping the transparency and flexibility of TensorFlow.
  • Standardization: Provide a standard way in respect to the implementation of models and datasets in order to save time. Further, it automates the whole training and validation process, but also provides hooks to maintain customizability.
  • Superiority: Enable advanced features that are not included in the TensorFlow API, as well as retain its full functionality.

Key Features

To highlight the advanced features of TensorLight, an incomplete list of some main functionalities is provided that are not shipped with TensorFlow by default, or might even be missing in other high-level APIs. These include:

  • Transparent lifecycle management of the session and graph definition.
  • Abstraction of models and datasets to provide a reusable plug-and-play support.
  • Effortless support to train a model symmetrically on multiple GPUs, as well as prevent TensorFlow to allocate memory on other GPU devices of the cluster.
  • Train or evaluate a model with a single line of code.
  • Abstracted, runtime-exchangeable input pipelines which either use the simple feeding mechanism with NumPy arrays, or even multi-threaded input queues.
  • Automatic saving and loading of hyperparameters as JSON to simplify the evaluation management of numerous trainings.
  • Ready-to-use loss functions and metrics, even with latest advances for perceptual motivated image similarity assessment.
  • Extended recurrent functions to enable scheduled sampling, as well as an implementation of a ConvLSTM cell.
  • Automatic creation of periodic checkpoints and TensorBoard summaries.
  • Ability to work with other higher-level libraries hand in hand, such as tf.contrib or TF-slim.

Architecture

From an architectural perspective, the framework can be split into three main components. First, a collection of utility function that are unrelated to machine learning. Examples are functions to download and extract datasets, to process images and videos, or to generate animated GIFs and videos from a data array, to name just a few. Second, the high-level library which builds on top of TensorFlow. It includes several modules that either provide a simple access to functionally that it repeatedly required when developing deep learning applications, or features that are not included in TensorFlow yet. For instance, it handles the creation of weight and bias variables internally, offers a bunch of ready-to-use loss and initialization functions, or comes with some advanced visualization features to display feature maps or output images directly in an IPython Notebook. Third, an abstraction layer to simplify the overall lifecycle, to generalize the definition of a model graphs, as well as to enable a reusable and consistent access to datasets.

TensorLight Architecture

The user program can either exploit the high-level library and the provided utility functions for his existing projects, or take advantage from TensorLight's abstraction layes while creating new deep learning applications. The latter enables to radically reduce the amount of code that has to be written for training or evaluating the model. This is realized by encapsulating the lifecycle of TensorFlow's session, graph, summary-writer or checkpoint-saver, as well as the entire training or evaluation loop within a runtime module.

Examples

You want to learn more? Check out the tutorial and code examples.

Owner
Benjamin Kan
Passionate coder with focus on machine learning, mobile apps and game development
Benjamin Kan
This repo provides function call to track multi-objects in videos

Custom Object Tracking Introduction This repo provides function call to track multi-objects in videos with a given trained object detection model and

Jeff Lo 51 Nov 22, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Xuan Hieu Duong 7 Jan 12, 2022
UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
Collapse by Conditioning: Training Class-conditional GANs with Limited Data

Collapse by Conditioning: Training Class-conditional GANs with Limited Data Moha

Mohamad Shahbazi 33 Dec 06, 2022
Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Sukrut Rao 32 Dec 13, 2022
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
GLIP: Grounded Language-Image Pre-training

GLIP: Grounded Language-Image Pre-training Updates 12/06/2021: GLIP paper on arxiv https://arxiv.org/abs/2112.03857. Code and Model are under internal

Microsoft 862 Jan 01, 2023
HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

Google Research 6 Jul 07, 2022
GPU-Accelerated Deep Learning Library in Python

Hebel GPU-Accelerated Deep Learning Library in Python Hebel is a library for deep learning with neural networks in Python using GPU acceleration with

Hannes Bretschneider 1.2k Dec 21, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

4 Dec 09, 2022
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).

FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req

Dreamer 2 Aug 09, 2022
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
This repository compare a selfie with images from identity documents and response if the selfie match.

aws-rekognition-facecompare This repository compare a selfie with images from identity documents and response if the selfie match. This code was made

1 Jan 27, 2022