A single Python file with some tools for visualizing machine learning in the terminal.

Related tags

Machine Learningmlvt
Overview

Machine Learning Visualization Tools

A single Python file with some tools for visualizing machine learning in the terminal.

This demo is composed of three ideas, which are explained below. Here's how to get started:

git clone https://github.com/bwasti/mlvt.git
cd mlvt
python3 -m pip install -r requirements.txt
python3 test.py # demo above

or just copy the mlvt.py file!

mlvt.Reprint

Reprint helps with in-line animations. It works by keeping track of how much it printed so far and reprinting it when flush() is called.

You can use the with statement to hijack print statements and auto_flush=True to avoid calling flush() in a loop, like so:

print("loading!")
with mlvt.Reprint(auto_flush=True) as rp:
  for i in range(100):
    print(f"{i+1}%") # Reprint detects the loop and overwrites in-place
    time.sleep(0.02)
print("done!")

reprint.gif

or, if you'd prefer to avoid contexts, loop-detection and hijacked builtins

print("loading!")
rp = mlvt.Reprint()
for i in range(100):
  rp.print(f"{i+1}%")
  rp.flush()
  time.sleep(0.02)
print("done!")

mlvt.horiz_concat

horiz_concat concatenates multi-line strings horizontally, accounting for padding and ANSI escape sequences (for color text).

a = """
{ hello! }
          \_    
"""
b = """
 ___
|. .|
| ^ |
| o |
"""
print(mlvt.horiz_concat(a, b, padding=2))

yields


               ___
{ hello! }    |. .|
          \_  | ^ |
              | o |
              

plotille wrappers

Finally, there are a couple of small plotille wrappers that decouple updating charts and printing them. That library is great on its own, so I encourage you to check it out!

import mlvt
import numpy as np

# all charts take in width, height, color
hist = mlvt.Histogram(32, 8, color="bright_blue")
hist.update(np.random.randn(100))
print(hist)

gives us

 (Counts)  ^
8.80000000 |
7.70000000 | ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
6.60000000 | ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
5.50000000 | ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⣶⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
4.40000000 | ⠀⠀⠀⠀⠀⠀⠀⠀⢰⣶⣶⠀⠀⢸⡇⣿⠀⢰⣶⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
3.30000000 | ⠀⠀⠀⠀⠀⠀⠀⣿⢸⣿⣿⣿⣿⢸⣿⣿⣿⢸⣿⣿⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
2.20000000 | ⠀⠀⠀⠀⠀⠀⠀⣿⣿⣿⣿⣿⣿⢸⣿⣿⣿⣿⣿⣿⣿⣿⡇⢸⣿⠀⠀⠀⢸⡇⠀⠀
1.10000000 | ⠀⠀⢀⣀⡀⣿⣀⣿⣿⣿⣿⣿⣿⣸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀⠀⣇⣸⡇⠀⠀
         0 | ⠀⠀⢸⣿⡇⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀⠀⣿⣿⡇⠀⠀
-----------|-|---------|---------|---------|-> (X)
           | -2.124059 -0.741902 0.6402548 2.0224115
Owner
Bram Wasti
https://twitter.com/bwasti
Bram Wasti
A Python implementation of FastDTW

fastdtw Python implementation of FastDTW [1], which is an approximate Dynamic Time Warping (DTW) algorithm that provides optimal or near-optimal align

tanitter 651 Jan 04, 2023
The project's goal is to show a real world application of image segmentation using k means algorithm

The project's goal is to show a real world application of image segmentation using k means algorithm

2 Jan 22, 2022
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
MiniTorch - a diy teaching library for machine learning engineers

This repo is the full student code for minitorch. It is designed as a single repo that can be completed part by part following the guide book. It uses

1.1k Jan 07, 2023
Solve automatic numerical differentiation problems in one or more variables.

numdifftools The numdifftools library is a suite of tools written in _Python to solve automatic numerical differentiation problems in one or more vari

Per A. Brodtkorb 181 Dec 16, 2022
Module for statistical learning, with a particular emphasis on time-dependent modelling

Operating system Build Status Linux/Mac Windows tick tick is a Python 3 module for statistical learning, with a particular emphasis on time-dependent

X - Data Science Initiative 410 Dec 14, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
A Lucid Framework for Transparent and Interpretable Machine Learning Models.

Currently a Beta-Version lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning mod

lucidmode 15 Aug 12, 2022
Responsible Machine Learning with Python

Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

ph_ 624 Jan 06, 2023
MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

2 Aug 23, 2022
Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

24 Oct 27, 2022
Python bindings for MPI

MPI for Python Overview Welcome to MPI for Python. This package provides Python bindings for the Message Passing Interface (MPI) standard. It is imple

MPI for Python 604 Dec 29, 2022
Time-series momentum for momentum investing strategy

Time-series-momentum Time-series momentum strategy. You can use the data_analysis.py file to find out the best trigger and window for a given asset an

Victor Caldeira 3 Jun 18, 2022
PySpark ML Bank Churn Prediction

PySpark-Bank-Churn Surname: corresponds to the record (row) number and has no effect on the output. CreditScore: contains random values and has no eff

kemalgunay 2 Nov 11, 2021
Automated Time Series Forecasting

AutoTS AutoTS is a time series package for Python designed for rapidly deploying high-accuracy forecasts at scale. There are dozens of forecasting mod

Colin Catlin 652 Jan 03, 2023
Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

EconML/CausalML KDD 2021 Tutorial 124 Dec 28, 2022
MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.

The collaboration platform for Machine Learning MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine

MLReef 1.4k Dec 27, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Made in collaboration with Chris George for Art + ML Spring 2019.

Deepdream Eyes Made in collaboration with Chris George for Art + ML Spring 2019.

Francisco Cabrera 1 Jan 12, 2022
2021 Machine Learning Security Evasion Competition

2021 Machine Learning Security Evasion Competition This repository contains code samples for the 2021 Machine Learning Security Evasion Competition. P

Fabrício Ceschin 8 May 01, 2022