FairFuzz: AFL extension targeting rare branches

Related tags

Deep Learningafl-rb
Overview

FairFuzz

An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested structure (packet analyzers, xmllint, programs compiled with laf-inte, etc). AFL is written and maintained by Michal Zalewski [email protected]; FairFuzz extension by Caroline Lemieux [email protected].

Our paper on FairFuzz was published in ASE 2018.

Summary

This is a modified version of AFL which changes (1) the way in which AFL selects input for mutation and (2) the way in which AFL mutates inputs to target rare "branches" in the program under test. AFL keeps track of program coverage an input achieves by counting the number of times the input hits a Basic Block Transition (see AFL technical details for more detail). This basic block transition can be loosely associated with a branch in the control flow graph, thus we call refer to these transitions as branches.

On many benchmarks, this modification achieves faster branch coverage than AFL or AFLFast. The advantage seems particularly strong on programs structured with many nested conditional statements. The graphs below show the number of basic block transitions covered over 24 hours on 9 different benchmarks. Each run was repeated 20 times (one fuzzer only): the dark middle line is the average coverage achieved, and the bands represent 95% confidence intervals.

24 hour runs on benchmarks

Evaluation was conducted on on AFL 2.40b. All runs were done with no AFL dictionary: the emphasis on rare branches appears to yield better automated discovery of special sequences. On the tcpdump and xmllint benchmarks, FairFuzz was able to discover rare sequences over the 20 runs, which the other techniques did not discover. Over these 20 techniques each different technique, the number of runs finding portions of the sequence <!ATTLIST after 24 hours was:

subsequence AFL FidgetyAFL AFLFast.new FairFuzz
<!A 7 15 18 17
<!AT 1 2 3 11
<!ATT 1 0 0 1

More details in article.

Technical Summary

What is a rare branch?

We consider a branch to be rare if it is hit by fewer inputs than the other branches explored so far. We maintain a dynamic threshold for rarity: if a branch is hit by fewer inputs than (or exactly as many as) this threshold, it is rare. Precisely, the threshold is the lowest power of two bounding the number of inputs hitting the least-hit branch. For example, if the branch hit by the fewest inputs is hit by 19 inputs, the threshold will be 32, so any branch hit by ≤32 inputs will be rare. Once the rarest branch is hit by 33 inputs, the threshold will go up to 64.

To keep track of rarity information, after running every input, we increment a hit count for each branch.

How are inputs hitting rare branches selected?

When going through the queue to select inputs to mutate, FairFuzz selects inputs only if -- at the time of selection -- they hit a rare branch. The rare branch an input hits is selected as the target branch. If an input hits multiple rare branches, FairFuzz selects the rarest one (the one hit by the fewest inputs) as the target branch. If an input hits no rare branches, it is skipped (see the -q option below).

How are mutations targeted to a branch?

Once an input is selected from the queue, along with its designated target branch, FairFuzz computes a branch mask for the target branch. For every position in the input, the branch mask designates whether

  1. the byte at that position can be overwritten (overwritable),
  2. the byte at that position can be deleted (deleteable), or
  3. a byte can be inserted at that position (insertable),

while still hitting the target branch. FairFuzz computes an approximation to this branch mask dynamically, in a way similar to AFL's effector map. FairFuzz goes through the input, and at each position flips the byte, deletes the byte, or inserts a byte, then runs the mutated input to check whether it hits the target branch. If the mutated input hits the target branch, the position is marked as overwritable, deleteable, or insertable, respectively.

The branch mask is then used to influence mutations as follows:

  1. In the deterministic stages1, a mutation is only performed at a location if the branch mask designates the position as overwritable (or insertable, for dictionary element insert). For multi-byte modifications, a modification is only performed if all bytes are overwritable. The mask is used in conjunction with the effector map when the effector map is used.
  2. In the havoc stage, positions for mutations are randomly selected within the modifiable positions of the branch mask. For example, if bytes 5-10 and 13-20 in a 20-byte input can be overwritten without failing to hit the target branch, when randomly selecting a byte to randomly mutate, FairFuzz will randomly select a position in [5,6,7,8,9,10,13,...,20] to mutate. After a havoc mutation that deletes (resp. adds) a sequence of bytes in the input, FairFuzz deletes the sequence (resp. adds an "all modifiable" sequence) at the corresponding location in the branch mask.2 The branch mask becomes approximate after this point.

1 The mask is not used in the bitflipping stage since this would interfere with AFL's automatic detection of dictionary elements.

2 The mask is not used to determine where to splice inputs in the splicing stage: during splicing, the first part of the branch mask is kept, but the spliced half of the input is marked as all modifiable.

Usage summary

For basic AFL usage, see the README in docs/ (the one with no .md extension). There are four FairFuzz Rare Branches-specific options:

Running options (may be useful for functionality):

  • -r adds an additional trimming stage before mutating inputs. This trimming is more aggressive than AFL's, trimming the input down only according to the target branch -- the resulting trimmed input may have a different path than the original input, but will still hit the target branch. Recommended for use if there are very large seed files and deterministic mutations are being run.
  • -q num bootstraps the rare branch input selection from the queue with the regular AFL input selection mechanism. If after an entire cycle through the queue, no new branches are discovered, bootstrap according to num as follows:
    • -q 1 go back to regular AFL queueing + no branch mask on mutations until a new branch is found
    • -q 2 go back to regular AFL queueing + no branch mask on mutations + no deterministic mutations until a new branch is found
    • -q 3 go back to regular AFL queueing + no branch mask on mutations for a single queueing cycle

Evaluation options (mostly useful for comparing AFL versions):

  • -b disables the branch mask. (sets every position in the mask as modifiable -- will incur unnecessary slowdown compared to AFL)
  • -s runs a "shadow" mutation run before the branch-mask enabled run. Side effects are disabled in this run. This allows for direct comparison of the effect of the branch mask on new coverage discovered/number of inputs hitting the target branch. See min-branch-fuzzing.log produced in the AFL output directory for details.
Owner
Caroline Lemieux
Caroline Lemieux
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner

Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges

Andrew Stolman 1 Apr 30, 2021
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021
Code for the paper Learning the Predictability of the Future

Learning the Predictability of the Future Code from the paper Learning the Predictability of the Future. Website of the project in hyperfuture.cs.colu

Computer Vision Lab at Columbia University 139 Nov 18, 2022
Using machine learning to predict undergrad college admissions.

College-Prediction Project- Overview: Many have tried, many have failed. Few trailblazers are ambitious enought to chase acceptance into the top 15 un

John H Klinges 1 Jan 05, 2022
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of

azad 2 Jul 09, 2022
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

1.3k Dec 25, 2022
EfficientMPC - Efficient Model Predictive Control Implementation

efficientMPC Efficient Model Predictive Control Implementation The original algo

Vin 8 Dec 04, 2022
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
Automatic Data-Regularized Actor-Critic (Auto-DrAC)

Auto-DrAC: Automatic Data-Regularized Actor-Critic This is a PyTorch implementation of the methods proposed in Automatic Data Augmentation for General

89 Dec 13, 2022
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023