Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

Related tags

Deep LearningIC-Conv
Overview

IC-Conv

This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search.

Getting Started

Download ImageNet pre-trained checkpoints.

Extract the file to get the following directory tree

|-- README.md
|-- ckpt
|   |-- detection
|   |-- human_pose
|   |-- segmentation
|-- config
|-- model
|-- pattern_zoo

Easy Use

The current implementation is coupled to specific downstream tasks. OpenMMLab users can quickly use IC-Conv in the following simple ways.

from models import IC_ResNet
import torch
net = IC_ResNet(depth=50,pattern_path='pattern_zoo/detection/ic_r50_k9.json')
net.eval()
inputs = torch.rand(1, 3, 32, 32)
outputs = net.forward(inputs)

For 2d Human Pose Estimation using MMPose

  1. Copying the config files to the config path of mmpose, such as
cp config/human_pose/ic_res50_k13_coco_640x640.py your_mmpose_path/mmpose/configs/bottom_up/resnet/coco/ic_res50_k13_coco_640x640.py
  1. Copying the inception conv files to the model path of mmpose,
cp model/ic_conv2d.py your_mmpose_path/mmpose/mmpose/models/backbones/ic_conv2d.py
cp model/ic_resnet.py your_mmpose_path/mmpose/mmpose/models/backbones/ic_resnet.py
  1. Running it directly like MMPose.

Model Zoo

We provided the pre-trained weights of IC-ResNet-50, IC-ResNet-101and IC-ResNeXt-101 (32x4d) on ImageNet and the weights trained on specific tasks.

For users with limited computing power, you can directly reuse our provided IC-Conv and ImageNet pre-training weights for detection, segmentation, and 2d human pose estimation tasks on other datasets.

Attentions: The links in the tables below are relative paths. Therefore, you should clone the repository and download checkpoints.

Object Detection

Detector Backbone Lr AP dilation_pattern checkpoint
Faster-RCNN-FPN IC-R50 1x 38.9 pattern ckpt/imagenet_retrain_ckpt
Faster-RCNN-FPN IC-R101 1x 41.9 pattern ckpt/imagenet_retrain_ckpt
Faster-RCNN-FPN IC-X101-32x4d 1x 42.1 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-R50 1x 42.4 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-R101 1x 45.0 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-X101-32x4d 1x 45.7 pattern ckpt/imagenet_retrain_ckpt

Instance Segmentation

Detector Backbone Lr box AP mask AP dilation_pattern checkpoint
Mask-RCNN-FPN IC-R50 1x 40.0 35.9 pattern ckpt/imagenet_retrain_ckpt
Mask-RCNN-FPN IC-R101 1x 42.6 37.9 pattern ckpt/imagenet_retrain_ckpt
Mask-RCNN-FPN IC-X101-32x4d 1x 43.4 38.4 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-R50 1x 43.4 36.8 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-R101 1x 45.7 38.7 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-X101-32x4d 1x 46.4 39.1 pattern ckpt/imagenet_retrain_ckpt

2d Human Pose Estimation

We adjust the learning rate of resnet backbone in MMPose and get better baseline results. Please see the specific config files in config/human_pose/.

Results on COCO val2017 without multi-scale test
Backbone Input Size AP dilation_pattern checkpoint
R50(mmpose) 640x640 47.9 ~ ~
R50 640x640 51.0 ~ ~
IC-R50 640x640 62.2 pattern ckpt/imagenet_retrain_ckpt
R101 640x640 55.5 ~ ~
IC-R101 640x640 63.3 pattern ckpt/imagenet_retrain_ckpt
Results on COCO val2017 with multi-scale test. 3 default scales ([2, 1, 0.5]) are used
Backbone Input Size AP
R50(mmpose) 640x640 52.5
R50 640x640 55.8
IC-R50 640x640 65.8
R101 640x640 60.2
IC-R101 640x640 68.5

Acknowledgement

The human pose estimation experiments are built upon MMPose.

Citation

If our paper helps your research, please cite it in your publications:

@article{liu2020inception,
 title={Inception Convolution with Efficient Dilation Search},
 author={Liu, Jie and Li, Chuming and Liang, Feng and Lin, Chen and Sun, Ming and Yan, Junjie and Ouyang, Wanli and Xu, Dong},
 journal={arXiv preprint arXiv:2012.13587},
 year={2020}
}
Owner
Jie Liu
Jie Liu
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
Detectron2 for Document Layout Analysis

Detectron2 trained on PubLayNet dataset This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Det

Himanshu 163 Nov 21, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Hyperparameters tuning and features selection are two common steps in every machine learning pipeline.

shap-hypetune A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models. Overview Hyperparameters t

Marco Cerliani 422 Jan 08, 2023
Learning to Estimate Hidden Motions with Global Motion Aggregation

Learning to Estimate Hidden Motions with Global Motion Aggregation (GMA) This repository contains the source code for our paper: Learning to Estimate

Shihao Jiang (Zac) 221 Dec 18, 2022
The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

F-Clip — Fully Convolutional Line Parsing This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang

Xili Dai 115 Dec 28, 2022
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
Rohit Ingole 2 Mar 24, 2022
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 07, 2022
Project to create an open-source 6 DoF input device

6DInputs A Project to create open-source 3D printed 6 DoF input devices Note the plural ('6DInputs' and 'devices') in the headings. We would like seve

RepRap Ltd 47 Jul 28, 2022
Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudé 1 Jun 28, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023