Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

Related tags

Deep LearningIC-Conv
Overview

IC-Conv

This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search.

Getting Started

Download ImageNet pre-trained checkpoints.

Extract the file to get the following directory tree

|-- README.md
|-- ckpt
|   |-- detection
|   |-- human_pose
|   |-- segmentation
|-- config
|-- model
|-- pattern_zoo

Easy Use

The current implementation is coupled to specific downstream tasks. OpenMMLab users can quickly use IC-Conv in the following simple ways.

from models import IC_ResNet
import torch
net = IC_ResNet(depth=50,pattern_path='pattern_zoo/detection/ic_r50_k9.json')
net.eval()
inputs = torch.rand(1, 3, 32, 32)
outputs = net.forward(inputs)

For 2d Human Pose Estimation using MMPose

  1. Copying the config files to the config path of mmpose, such as
cp config/human_pose/ic_res50_k13_coco_640x640.py your_mmpose_path/mmpose/configs/bottom_up/resnet/coco/ic_res50_k13_coco_640x640.py
  1. Copying the inception conv files to the model path of mmpose,
cp model/ic_conv2d.py your_mmpose_path/mmpose/mmpose/models/backbones/ic_conv2d.py
cp model/ic_resnet.py your_mmpose_path/mmpose/mmpose/models/backbones/ic_resnet.py
  1. Running it directly like MMPose.

Model Zoo

We provided the pre-trained weights of IC-ResNet-50, IC-ResNet-101and IC-ResNeXt-101 (32x4d) on ImageNet and the weights trained on specific tasks.

For users with limited computing power, you can directly reuse our provided IC-Conv and ImageNet pre-training weights for detection, segmentation, and 2d human pose estimation tasks on other datasets.

Attentions: The links in the tables below are relative paths. Therefore, you should clone the repository and download checkpoints.

Object Detection

Detector Backbone Lr AP dilation_pattern checkpoint
Faster-RCNN-FPN IC-R50 1x 38.9 pattern ckpt/imagenet_retrain_ckpt
Faster-RCNN-FPN IC-R101 1x 41.9 pattern ckpt/imagenet_retrain_ckpt
Faster-RCNN-FPN IC-X101-32x4d 1x 42.1 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-R50 1x 42.4 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-R101 1x 45.0 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-X101-32x4d 1x 45.7 pattern ckpt/imagenet_retrain_ckpt

Instance Segmentation

Detector Backbone Lr box AP mask AP dilation_pattern checkpoint
Mask-RCNN-FPN IC-R50 1x 40.0 35.9 pattern ckpt/imagenet_retrain_ckpt
Mask-RCNN-FPN IC-R101 1x 42.6 37.9 pattern ckpt/imagenet_retrain_ckpt
Mask-RCNN-FPN IC-X101-32x4d 1x 43.4 38.4 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-R50 1x 43.4 36.8 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-R101 1x 45.7 38.7 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-X101-32x4d 1x 46.4 39.1 pattern ckpt/imagenet_retrain_ckpt

2d Human Pose Estimation

We adjust the learning rate of resnet backbone in MMPose and get better baseline results. Please see the specific config files in config/human_pose/.

Results on COCO val2017 without multi-scale test
Backbone Input Size AP dilation_pattern checkpoint
R50(mmpose) 640x640 47.9 ~ ~
R50 640x640 51.0 ~ ~
IC-R50 640x640 62.2 pattern ckpt/imagenet_retrain_ckpt
R101 640x640 55.5 ~ ~
IC-R101 640x640 63.3 pattern ckpt/imagenet_retrain_ckpt
Results on COCO val2017 with multi-scale test. 3 default scales ([2, 1, 0.5]) are used
Backbone Input Size AP
R50(mmpose) 640x640 52.5
R50 640x640 55.8
IC-R50 640x640 65.8
R101 640x640 60.2
IC-R101 640x640 68.5

Acknowledgement

The human pose estimation experiments are built upon MMPose.

Citation

If our paper helps your research, please cite it in your publications:

@article{liu2020inception,
 title={Inception Convolution with Efficient Dilation Search},
 author={Liu, Jie and Li, Chuming and Liang, Feng and Lin, Chen and Sun, Ming and Yan, Junjie and Ouyang, Wanli and Xu, Dong},
 journal={arXiv preprint arXiv:2012.13587},
 year={2020}
}
Owner
Jie Liu
Jie Liu
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
METER: Multimodal End-to-end TransformER

METER Code and pre-trained models will be publicized soon. Citation @article{dou2021meter, title={An Empirical Study of Training End-to-End Vision-a

Zi-Yi Dou 257 Jan 06, 2023
A pytorch reprelication of the model-based reinforcement learning algorithm MBPO

Overview This is a re-implementation of the model-based RL algorithm MBPO in pytorch as described in the following paper: When to Trust Your Model: Mo

Xingyu Lin 93 Jan 05, 2023
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"

ASSL This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR)

Huan Wang 47 Nov 28, 2022
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
Realtime micro-expression recognition using OpenCV and PyTorch

Micro-expression Recognition Realtime micro-expression recognition from scratch using OpenCV and PyTorch Try it out with a webcam or video using the e

Irfan 35 Dec 05, 2022
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
Everything about being a TA for ITP/AP course!

تی‌ای بودن! تی‌ای یا دستیار استاد از نقش‌های رایج بین دانشجویان مهندسی است، این ریپوزیتوری قرار است نکات مهم درمورد تی‌ای بودن و تی ای شدن را به ما نش

<a href=[email protected]"> 14 Sep 10, 2022
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022