Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

Overview

DHF1K

===========================================================================

Wenguan Wang, J. Shen, M.-M Cheng and A. Borji,

Revisiting Video Saliency: A Large-scale Benchmark and a New Model,

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018 and

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2019

===========================================================================

The code (ACLNet) and dataset (DHF1K with raw gaze records, UCF-sports are new added!) can be downloaded from:

Google disk:https://drive.google.com/open?id=1sW0tf9RQMO4RR7SyKhU8Kmbm4jwkFGpQ

Baidu pan: https://pan.baidu.com/s/110NIlwRIiEOTyqRwYdDnVg

The Hollywood-2 (74.6G, including attention maps) can be downloaded from:

Google disk:https://drive.google.com/file/d/1vfRKJloNSIczYEOVjB4zMK8r0k4VJuWk/view?usp=sharing

Baidu pan: link:https://pan.baidu.com/s/16BIAuaGEDDbbjylJ8zziuA code:bt3x

Since so many people are interested in the training code, I decide to upload it in above webdisks. Enjoy it.

===========================================================================

Files:

'video': 1000 videos (videoname.AVI)

'annotation/videoname/maps': continuous saliency maps in '.png' format

'annotation/videoname/fixation': binary eye fixation maps in '.png' format

'annotation/videoname/maps': binary eye fixation maps stored in mat file

'generate_frame.m': used for extracting the frame images from AVI videos.

Please note raw data of individual viewers are stored in 'exportdata_train.rar'.

Note that please do not change the way of naming frames.

===========================================================================

Dataset splitting:

Training set: first 600 videos (001.AVI-600.AVI)

Validation set: 100 videos (601.AVI-700.AVI)

Testing set: 300 videos (701.AVI-1000.AVI)

The annotations for the training and val sets are released, but the

annotations of the testing set are held-out for benchmarking.

===========================================================================

We have corrected some statistics of our results (baseline training setting (iii)) on UCF sports dataset. Please see our newest version in ArXiv.

===========================================================================

Note that, for Holly-wood2 dataset, we used the split videos (each video only contains one shot), instead of the full videos.

===========================================================================

The raw data of gaze record "exportdata_train.rar" has been uploaded.

===========================================================================

For DHF1K dataset, we use following functions to generate continous saliency map:

[x,y]=find(fixations);

densityMap= make_gauss_masks(y,x,[video_res_y,video_res_x]);

make_gauss_masks.m has been uploaded.

For UCF and Hollywood, I directly use following functions:

densityMap = imfilter(fixations,fspecial('gaussian',150,20),'replicate');

===========================================================================

Results submission.

Please orgnize your results in following format:

yourmethod/videoname/framename.png

Note that the frames and framenames should be generated by 'generate_frame.m'.

Then send your results to '[email protected]'.

You can only sumbmit ONCE within One week.

Please first test your model on the val set or other video saliency dataset.

The response may be more than one week.

If you want to list your results on our web, please send your name, model

name, paper title, short description of your method and the link of the web

of your project (if you have).

===========================================================================

We use

Keras: 2.2.2

tensorflow: 1.10.0

to implement our model.

===========================================================================

Citation:

@InProceedings{Wang_2018_CVPR,
author = {Wang, Wenguan and Shen, Jianbing and Guo, Fang and Cheng, Ming-Ming and Borji, Ali},
title = {Revisiting Video Saliency: A Large-Scale Benchmark and a New Model},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition},
year = {2018}
}

@ARTICLE{Wang_2019_revisitingVS, 
author={W. {Wang} and J. {Shen} and J. {Xie} and M. {Cheng} and H. {Ling} and A. {Borji}}, 
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
title={Revisiting Video Saliency Prediction in the Deep Learning Era}, 
year={2019}, 
}

If you find our dataset is useful, please cite above papers.

===========================================================================

Code (ACLNet):

You can find the code in google disk: https://drive.google.com/open?id=1sW0tf9RQMO4RR7SyKhU8Kmbm4jwkFGpQ

===========================================================================

Terms of use:

The dataset and code are licensed under a Creative Commons Attribution 4.0 License.

===========================================================================

Contact Information Email: [email protected]


Owner
Wenguan Wang
Postdoctoral Scholar
Wenguan Wang
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the Machine Learning 4 Health Workshop

Detection-aided liver lesion segmentation Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the

Image Processing Group - BarcelonaTECH - UPC 96 Oct 26, 2022
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
PyTorch implementation for paper StARformer: Transformer with State-Action-Reward Representations.

StARformer This repository contains the PyTorch implementation for our paper titled StARformer: Transformer with State-Action-Reward Representations.

Jinghuan Shang 14 Dec 09, 2022
TargetAllDomainObjects - A python wrapper to run a command on against all users/computers/DCs of a Windows Domain

TargetAllDomainObjects A python wrapper to run a command on against all users/co

Podalirius 19 Dec 13, 2022
U-2-Net: U Square Net - Modified for paired image training of style transfer

U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b

Doron Adler 43 Oct 03, 2022
Simple and understandable swin-transformer OCR project

swin-transformer-ocr ocr with swin-transformer Overview Simple and understandable swin-transformer OCR project. The model in this repository heavily r

Ha YongWook 67 Dec 31, 2022
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

YOLOv5-Paddle YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle 支持AutoBatch 支持AutoAnchor 支持GPU Memory 快速开始 使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePa

QuanHao Guo 20 Nov 14, 2022
This repository contains implementations and illustrative code to accompany DeepMind publications

DeepMind Research This repository contains implementations and illustrative code to accompany DeepMind publications. Along with publishing papers to a

DeepMind 11.3k Dec 31, 2022
Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models". "test_suite_cases.csv" con

Paul Röttger 43 Nov 11, 2022
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

25.7k Jan 09, 2023
Continuous Security Group Rule Change Detection & Response at scale

Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those

Raajhesh Kannaa Chidambaram 3 Aug 13, 2022
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 07, 2022
VOneNet: CNNs with a Primary Visual Cortex Front-End

VOneNet: CNNs with a Primary Visual Cortex Front-End A family of biologically-inspired Convolutional Neural Networks (CNNs). VOneNets have the followi

The DiCarlo Lab at MIT 99 Dec 22, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022