PyTorch framework for Deep Learning research and development.

Overview

Catalyst logo

Accelerated DL & RL

Build Status CodeFactor Pipi version Docs PyPI Status

Twitter Telegram Slack Github contributors

PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentation and code/ideas reusing. Being able to research/develop something new, rather than write another regular train loop.
Break the cycle - use the Catalyst!

Project manifest. Part of PyTorch Ecosystem. Part of Catalyst Ecosystem:

  • Alchemy - Experiments logging & visualization
  • Catalyst - Accelerated Deep Learning Research and Development
  • Reaction - Convenient Deep Learning models serving

Catalyst at AI Landscape.


Catalyst.Segmentation Build Status Github contributors

Note: this repo uses advanced Catalyst Config API and could be a bit out-of-day right now. Use Catalyst's minimal examples section for a starting point and up-to-day use cases, please.

You will learn how to build image segmentation pipeline with transfer learning using the Catalyst framework.

Goals

  1. Install requirements
  2. Prepare data
  3. Run: raw data → production-ready model
  4. Get results
  5. Customize own pipeline

1. Install requirements

Using local environment:

pip install -r requirements/requirements.txt

Using docker:

This creates a build catalyst-segmentation with the necessary libraries:

make docker-build

2. Get Dataset

Try on open datasets

You can use one of the open datasets

/dev/null mv isbi_cleared_191107 ./data/origin elif [[ "$DATASET" == "voc2012" ]]; then # semantic segmentation # http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar tar -xf VOCtrainval_11-May-2012.tar &>/dev/null mkdir -p ./data/origin/images/; mv VOCdevkit/VOC2012/JPEGImages/* $_ mkdir -p ./data/origin/raw_masks; mv VOCdevkit/VOC2012/SegmentationClass/* $_ fi ">
export DATASET="isbi"

rm -rf data/
mkdir -p data

if [[ "$DATASET" == "isbi" ]]; then
    # binary segmentation
    # http://brainiac2.mit.edu/isbi_challenge/
    download-gdrive 1uyPb9WI0t2qMKIqOjFKMv1EtfQ5FAVEI isbi_cleared_191107.tar.gz
    tar -xf isbi_cleared_191107.tar.gz &>/dev/null
    mv isbi_cleared_191107 ./data/origin
elif [[ "$DATASET" == "voc2012" ]]; then
    # semantic segmentation
    # http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
    tar -xf VOCtrainval_11-May-2012.tar &>/dev/null
    mkdir -p ./data/origin/images/; mv VOCdevkit/VOC2012/JPEGImages/* $_
    mkdir -p ./data/origin/raw_masks; mv VOCdevkit/VOC2012/SegmentationClass/* $_
fi

Use your own dataset

Prepare your dataset

Data structure

Make sure, that final folder with data has the required structure:

/path/to/your_dataset/
        images/
            image_1
            image_2
            ...
            image_N
        raw_masks/
            mask_1
            mask_2
            ...
            mask_N

Data location

  • The easiest way is to move your data:

    mv /path/to/your_dataset/* /catalyst.segmentation/data/origin

    In that way you can run pipeline with default settings.

  • If you prefer leave data in /path/to/your_dataset/

    • In local environment:

      • Link directory
        ln -s /path/to/your_dataset $(pwd)/data/origin
      • Or just set path to your dataset DATADIR=/path/to/your_dataset when you start the pipeline.
    • Using docker

      You need to set:

         -v /path/to/your_dataset:/data \ #instead default  $(pwd)/data/origin:/data

      in the script below to start the pipeline.

3. Segmentation pipeline

Fast&Furious: raw data → production-ready model

The pipeline will automatically guide you from raw data to the production-ready model.

We will initialize Unet model with a pre-trained ResNet-18 encoder. During current pipeline model will be trained sequentially in two stages.

Binary segmentation pipeline

Run in local environment:

CUDA_VISIBLE_DEVICES=0 \
CUDNN_BENCHMARK="True" \
CUDNN_DETERMINISTIC="True" \
WORKDIR=./logs \
DATADIR=./data/origin \
IMAGE_SIZE=256 \
CONFIG_TEMPLATE=./configs/templates/binary.yml \
NUM_WORKERS=4 \
BATCH_SIZE=256 \
bash ./bin/catalyst-binary-segmentation-pipeline.sh

Run in docker:

export LOGDIR=$(pwd)/logs
docker run -it --rm --shm-size 8G --runtime=nvidia \
   -v $(pwd):/workspace/ \
   -v $LOGDIR:/logdir/ \
   -v $(pwd)/data/origin:/data \
   -e "CUDA_VISIBLE_DEVICES=0" \
   -e "USE_WANDB=1" \
   -e "LOGDIR=/logdir" \
   -e "CUDNN_BENCHMARK='True'" \
   -e "CUDNN_DETERMINISTIC='True'" \
   -e "WORKDIR=/logdir" \
   -e "DATADIR=/data" \
   -e "IMAGE_SIZE=256" \
   -e "CONFIG_TEMPLATE=./configs/templates/binary.yml" \
   -e "NUM_WORKERS=4" \
   -e "BATCH_SIZE=256" \
   catalyst-segmentation ./bin/catalyst-binary-segmentation-pipeline.sh

Semantic segmentation pipeline

Run in local environment:

CUDA_VISIBLE_DEVICES=0 \
CUDNN_BENCHMARK="True" \
CUDNN_DETERMINISTIC="True" \
WORKDIR=./logs \
DATADIR=./data/origin \
IMAGE_SIZE=256 \
CONFIG_TEMPLATE=./configs/templates/semantic.yml \
NUM_WORKERS=4 \
BATCH_SIZE=256 \
bash ./bin/catalyst-semantic-segmentation-pipeline.sh

Run in docker:

export LOGDIR=$(pwd)/logs
docker run -it --rm --shm-size 8G --runtime=nvidia \
   -v $(pwd):/workspace/ \
   -v $LOGDIR:/logdir/ \
   -v $(pwd)/data/origin:/data \
   -e "CUDA_VISIBLE_DEVICES=0" \
   -e "USE_WANDB=1" \
   -e "LOGDIR=/logdir" \
   -e "CUDNN_BENCHMARK='True'" \
   -e "CUDNN_DETERMINISTIC='True'" \
   -e "WORKDIR=/logdir" \
   -e "DATADIR=/data" \
   -e "IMAGE_SIZE=256" \
   -e "CONFIG_TEMPLATE=./configs/templates/semantic.yml" \
   -e "NUM_WORKERS=4" \
   -e "BATCH_SIZE=256" \
   catalyst-segmentation ./bin/catalyst-semantic-segmentation-pipeline.sh

The pipeline is running and you don’t have to do anything else, it remains to wait for the best model!

Visualizations

You can use W&B account for visualisation right after pip install wandb:

wandb: (1) Create a W&B account
wandb: (2) Use an existing W&B account
wandb: (3) Don't visualize my results

Tensorboard also can be used for visualisation:

tensorboard --logdir=/catalyst.segmentation/logs

4. Results

All results of all experiments can be found locally in WORKDIR, by default catalyst.segmentation/logs. Results of experiment, for instance catalyst.segmentation/logs/logdir-191107-094627-2f31d790, contain:

checkpoints

  • The directory contains all checkpoints: best, last, also of all stages.
  • best.pth and last.pht can be also found in the corresponding experiment in your W&B account.

configs

  • The directory contains experiment`s configs for reproducibility.

logs

  • The directory contains all logs of experiment.
  • Metrics also logs can be displayed in the corresponding experiment in your W&B account.

code

  • The directory contains code on which calculations were performed. This is necessary for complete reproducibility.

5. Customize own pipeline

For your future experiments framework provides powerful configs allow to optimize configuration of the whole pipeline of segmentation in a controlled and reproducible way.

Configure your experiments

  • Common settings of stages of training and model parameters can be found in catalyst.segmentation/configs/_common.yml.

    • model_params: detailed configuration of models, including:
      • model, for instance ResnetUnet
      • detailed architecture description
      • using pretrained model
    • stages: you can configure training or inference in several stages with different hyperparameters. In our example:
      • optimizer params
      • first learn the head(s), then train the whole network
  • The CONFIG_TEMPLATE with other experiment`s hyperparameters, such as data_params and is here: catalyst.segmentation/configs/templates/binary.yml. The config allows you to define:

    • data_params: path, batch size, num of workers and so on
    • callbacks_params: Callbacks are used to execute code during training, for example, to get metrics or save checkpoints. Catalyst provide wide variety of helpful callbacks also you can use custom.

You can find much more options for configuring experiments in catalyst documentation.

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 07, 2022
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Shilong Liu 274 Dec 28, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
My implementation of transformers related papers for computer vision in pytorch

vision_transformers This is my personnal repo to implement new transofrmers based and other computer vision DL models I am currenlty working without a

samsja 1 Nov 10, 2021
Hand tracking demo for DIY Smart Glasses with a remote computer doing the work

CameraStream This is a demonstration that streams the image from smartglasses to a pc, does the hand recognition on the remote pc and streams the proc

Teemu Laurila 20 Oct 13, 2022
Semantic Segmentation Architectures Implemented in PyTorch

pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i

Meet Shah 3.3k Dec 29, 2022
For holding anime-related object classification and detection models

Animesion An end-to-end framework for anime-related object classification, detection, segmentation, and other models. Update: 01/22/2020. Due to time-

Edwin Arkel Rios 72 Nov 30, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
Database Reasoning Over Text project for ACL paper

Database Reasoning over Text This repository contains the code for the Database Reasoning Over Text paper, to appear at ACL2021. Work is performed in

Facebook Research 320 Dec 12, 2022
Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Ian Pointer 368 Dec 17, 2022
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
Repository for self-supervised landmark discovery

self-supervised-landmarks Repository for self-supervised landmark discovery Requirements pytorch pynrrd (for 3d images) Usage The use of this models i

Riddhish Bhalodia 2 Apr 18, 2022
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
A foreign language learning aid using a neural network to predict probability of translating foreign words

Langy Langy is a reading-focused foreign language learning aid orientated towards young children. Reading is an activity that every child knows. It is

Shona Lowden 6 Nov 17, 2021
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning

Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th

Daniel Stanley Tan 325 Dec 28, 2022
Plotting points that lie on the intersection of the given curves using gradient descent.

Plotting intersection of curves using gradient descent Webapp Link --- What's the app about Why this app Plotting functions and their intersection. A

Divakar Verma 2 Jan 09, 2022