GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

Overview

ICLR Computational Geometry & Topology Challenge 2022

Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 Workshop on Geometrical and Topological Representation Learning.

Lead organizers: Adele Myers, Saiteja Utpala, and Nina Miolane (UC Santa Barbara).

DOI

Description of the challenge

The purpose of this challenge is to foster reproducible research in geometric (deep) learning, by crowdsourcing the open-source implementation of learning algorithms on manifolds. Participants are asked to contribute code for a published/unpublished algorithm, following Scikit-Learn/Geomstats' or pytorch's APIs and computational primitives, benchmark it, and demonstrate its use in real-world scenarios.

Each submission takes the form of a Jupyter Notebook leveraging the coding infrastructure and building blocks from the package Geomstats. The participants submit their Jupyter Notebook via Pull Requests (PR) to this GitHub repository, see Guidelines below.

In addition to the challenge's prizes, participants will have the opportunity to co-author a white paper summarizing the findings of the competition.

This is the second edition of this challenge! Feel free to look at last year's guidelines, submissions, winners and paper for additional information.

Note: We invite participants to review this README regularly, as details are added to the guidelines when questions are submitted to the organizers.

Deadline

The final Pull Request submission date and hour will have to take place before:

  • April 4th, 2022 at 16:59 PST (Pacific Standard Time).

The participants can freely commit to their Pull Request and modify their submission until this time.

Winners announcement and prizes

The first 3 winners will be announced at the ICLR 2022 virtual workshop Geometrical and Topological Representation Learning and advertised through the web. The winners will also be contacted directly via email.

The prizes are:

  • $2000 for the 1st place,
  • $1000 for the 2nd place,
  • $500 for the 3rd place.

Subscription

Anyone can participate and participation is free. It is enough to:

  • send a Pull Request,
  • follow the challenge guidelines, to be automatically considered amongst the participants.

An acceptable PR automatically subscribes a participant to the challenge.

Guidelines

We encourage the participants to start submitting their Pull Request early on. This allows to debug the tests and helps to address potential issues with the code.

Teams are accepted and there is no restriction on the number of team members.

The principal developpers of Geomstats (i.e. the co-authors of Geomstats published papers) are not allowed to participate.

A submission should respect the following Jupyter Notebook’s structure:

  1. Introduction and Motivation
  • Explain and motivate the choice of learning algorithm
  1. Related Work and Implementations
  • Contrast the chosen learning algorithms with other algorithms
  • Describe existing implementations, if any
  1. Implementation of the Learning Algorithm --- with guidelines:
  • Follow Scikit-Learn/Geomstats APIs, see RiemannianKMeans example, or Pytorch base classes such as torch.nn.Module.
  • IMPORTANT: Use Geomstats computational primitives (e.g. exponential, geodesics, parallel transport, etc). Note that the functions in geomstats.backend are not considered computational primitives, as they are only wrappers around autograd, numpy, torch and tensorflow functions.
  1. Test on Synthetic Datasets and Benchmark
  2. Application to Real-World Datasets

Examples of possible submissions

  • Comparing embedding on trees in hyperbolic plane and variants, e.g. from Sarkar 2011.
  • Hypothesis testing on manifolds, e.g. from Osborne et al 2013..
  • (Extended/Unscented) Kalman Filters on Lie groups and variants, e.g. from Bourmaud et al 2013.
  • Gaussian Processes on Riemannian Manifolds and variants, e.g. from Calandra et al 2014.
  • Barycenter Subspace Analysis on Manifolds and variants, e.g. from Pennec 2016.
  • Curve fitting on manifolds and variants, e.g. from Gousenbourger et al 2018.
  • Smoothing splines on manifolds, e.g. from Kim et al 2020.
  • Recurrent models on manifolds and variants, e.g. from Chakraborty et al 2018.
  • Geodesic CNNs on manifolds and variants, e.g. from Masci et al 2018.
  • Variational autoencoders on Riemannian manifolds and variants, e.g. from Miolane et al 2019.
  • Probabilistic Principal Geodesic Analysis and variants, e.g. from Zhang et al 2019.
  • Gauge-equivariant neural networks and variants, e.g. from Cohen et al 2019.
  • and many more, as long as you implement them using Geomstats computational primitives (e.g. exponential, geodesics, parallel transport, etc).

Before starting your implementation, make sure that the algorithm that you want to contribute is not already in the learning module of Geomstats.

The notebook provided in the submission-example-* folders is also an example of submission that can help the participants to design their proposal and to understand how to use/inherit from Scikit-Learning, Geomstats, Pytorch. Note that this example is "naive" on purpose and is only meant to give illustrative templates rather than to provide a meaningful data analysis. More examples on how to use the packages can be found on the GitHub repository of Geomstats.

The code should be compatible with Python 3.8 and make an effort to respect the Python style guide PEP8. The portion of the code using geomstats only needs to run with numpy or pytorch backends. However, it will be appreciated by the reviewers/voters if the code can run in all backends: numpy, autograd, tensorflow and pytorch, using geomstats gs., when applicable.

The Jupyter notebooks are automatically tested when a Pull Request is submitted. The tests have to pass. Their running time should not exceed 3 hours, although exceptions can be made by contacting the challenge organizers.

If a dataset is used, the dataset has to be public and referenced. There is no constraint on the data type to be used.

A participant can raise GitHub issues and/or request help or guidance at any time through Geomstats slack. The help/guidance will be provided modulo availability of the maintainers.

Submission procedure

  1. Fork this repository to your GitHub.

  2. Create a new folder with your team leader's GitHub username in the root folder of the forked repository, in the main branch.

  3. Place your submission inside the folder created at step 2, with:

  • the unique Jupyter notebook (the file shall end with .ipynb),
  • datasets (if needed),
  • auxiliary Python files (if needed).

Datasets larger than 10MB shall be directly imported from external URLs or from data sharing platforms such as OpenML.

If your project requires external pip installable libraries that are not amongst Geomstats’ requirements.txt, you can include them at the beginning of your Jupyter notebook, e.g. with:

import sys
!{sys.executable} -m pip install numpy scipy torch

Evaluation and ranking

The Condorcet method will be used to rank the submissions and decide on the winners. The evaluation criteria will be:

  1. How "interesting"/"important"/"useful" is the learning algorithm? Note that this is a subjective evaluation criterion, where the reviewers will evaluate what the implementation of this algorithm brings to the community (regardless of the quality of the code).
  2. How readable/clean is the implementation? How well does the submission respect Scikit-Learn/Geomstats/Pytorch's APIs? If applicable: does it run across backends?
  3. Is the submission well-written? Does the docstrings help understand the methods?
  4. How informative are the tests on synthetic datasets, the benchmarks, and the real-world application?

Note that these criteria do not reward new learning algorithms, nor learning algorithms that outperform the state-of-the-art --- but rather clean code and exhaustive tests that will foster reproducible research in our field.

Selected Geomstats maintainers and collaborators, as well as each team whose submission respects the guidelines, will vote once on Google Form to express their preference for the 3 best submissions according to each criterion. Note that each team gets only one vote, even if there are several participants in the team.

The 3 preferences must all 3 be different: e.g. one cannot select the same Jupyter notebook for both first and second place. Such irregular votes will be discarded. A link to a Google Form will be provided to record the votes. It will be required to insert an email address to identify the voter. The voters will remain secret, only the final ranking will be published.

Questions?

Feel free to contact us through GitHub issues on this repository, on Geomstats repository or through Geomstats slack. Alternatively, you can contact Nina Miolane at [email protected].

Comments
  • Question about what algorithms would count

    Question about what algorithms would count

    Hi,

    I was wondering whether a couple of algorithms that are about learning metrics and embeddings would be within the scope.

    Specifically, if the following two algorithms (either individually or collectively) would be within scope

    1. TreeRep from paper. This is an algorithm that takes in a metric and outputs a tree.
    2. Tree embeddings in Hyperbolic space from this paper. This is an algorithm that takes a weighted tree and then embeds into the hyperbolic manifold.

    Thanks, Rishi

    opened by rsonthal 8
  • NeuroSEED for Small Open Reading Frame Proteins Submission

    NeuroSEED for Small Open Reading Frame Proteins Submission

    All the files for the code are in a branch called "master." There is one folder and inside are all the codes and folders necessary to run the code.

    opened by xiongjeffrey 3
  • Challenge submission: Sasaki Metric and Applications in Geodesic Analysis

    Challenge submission: Sasaki Metric and Applications in Geodesic Analysis

    Dear Challenge Team,

    we are happy to contribute our Project Sasaki Metric and Applications in Geodesic Analysis to the ICLR Challgene 2022.

    Best regards, Felix Ambellan, Martin Hanik, Esfandiar Nava-Yazdani, and Christoph von Tycowicz

    opened by vontycowicz 1
  • NeuroSEED for Small Open Reading Frame Proteins

    NeuroSEED for Small Open Reading Frame Proteins

    Unfortunately, I don't have access to the Geomstats Slack and I am unsure how to accurately submit a pull request. The link to our research folder is below. https://github.com/xiongjeffrey/NeuroSEED

    opened by xiongjeffrey 0
  • autodiff fails on svd in pre_shape.py

    autodiff fails on svd in pre_shape.py

    Dear geomstats team,

    we are trying to perform geodesic regression in Kendall shape space but encountered the issue that the current implementation is not compatible with autodiff functionality. In particular, the align method in geomstats/geometry/pre_shape.py employs singular value decomposition for which autodiff fails if a full set of left/right singular vectors are requested. However, providing the flag 'full_matrices=False' avoids this pitfall and should yield the same alignment.

    We added the flag and, indeed, are now able to run regression. We will submit the modified pre_shape.py along with our project s.t. it does not rely on short notice updates of geomstats.

    Best regards, Christoph

    opened by vontycowicz 1
Releases(final)
Chainer implementation of recent GAN variants

Chainer-GAN-lib This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score

399 Oct 23, 2022
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

William Falcon 141 Dec 30, 2022
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
Code for paper: Towards Tokenized Human Dynamics Representation

Video Tokneization Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation. Prerequisites (tested under Py

Kenneth Li 20 May 31, 2022
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021
Repository for self-supervised landmark discovery

self-supervised-landmarks Repository for self-supervised landmark discovery Requirements pytorch pynrrd (for 3d images) Usage The use of this models i

Riddhish Bhalodia 2 Apr 18, 2022
Learning Confidence for Out-of-Distribution Detection in Neural Networks

Learning Confidence Estimates for Neural Networks This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detectio

235 Jan 05, 2023
YOLOX_AUDIO is an audio event detection model based on YOLOX

YOLOX_AUDIO is an audio event detection model based on YOLOX, an anchor-free version of YOLO. This repo is an implementated by PyTorch. Main goal of YOLOX_AUDIO is to detect and classify pre-defined

intflow Inc. 77 Dec 19, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
A trashy useless Latin programming language written in python.

Codigum! The first programming langage in latin! (please keep your eyes closed when if you read the source code) It is pretty useless though. Document

Bic 2 Oct 25, 2021
Statistical-Rethinking-with-Python-and-PyMC3 - Python/PyMC3 port of the examples in " Statistical Rethinking A Bayesian Course with Examples in R and Stan" by Richard McElreath

Statistical Rethinking with Python and PyMC3 This repository has been deprecated in favour of this one, please check that repository for updates, for

Osvaldo Martin 786 Dec 29, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

197 Jan 07, 2023
Implementation of FSGNN

FSGNN Implementation of FSGNN. For more details, please refer to our paper Experiments were conducted with following setup: Pytorch: 1.6.0 Python: 3.8

19 Dec 05, 2022