PyTorch implementation of probabilistic deep forecast applied to air quality.

Overview

Probabilistic Deep Forecast

PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting arXiv.

Introduction

In this work, we develop a set of deep probabilistic models for air quality forecasting that quantify both aleatoric and epistemic uncertainties and study how to represent and manipulate their predictive uncertainties. In particular: * We conduct a broad empirical comparison and exploratory assessment of state-of-the-art techniques in deep probabilistic learning applied to air quality forecasting. Through exhaustive experiments, we describe training these models and evaluating their predictive uncertainties using various metrics for regression and classification tasks. * We improve uncertainty estimation using adversarial training to smooth the conditional output distribution locally around training data points. * We apply uncertainty-aware models that exploit the temporal and spatial correlation inherent in air quality data using recurrent and graph neural networks. * We introduce a new state-of-the-art example for air quality forecasting by defining the problem setup and selecting proper input features and models.

drawing
Decision score as a function of normalized aleatoric and epistemic confidence thresholds . See animation video here

Installation

install probabilistic_forecast' locally in “editable” mode ( any changes to the original package would reflect directly in your environment, os you don't have to re-insall the package every time you make some changes):

pip install -e .

Use the configuration file equirements.txt to the install the required packages to run this project.

File Structure

.
├── probabilistic_forecast/
│   ├── bnn.py (class definition for the Bayesian neural networks model)
│   ├── ensemble.py (class definition for the deep ensemble model)
│   ├── gnn_mc.py (class definition for the graph neural network model with MC dropout)
│   ├── lstm_mc.py (class definition for the LSTM model with MC dropout)
│   ├── nn_mc.py (class definition for the standard neural network model with MC droput)
│   ├── nn_standard.py (class definition for the standard neural network model without MC dropout)
│   ├── swag.py (class definition for the SWAG model)
│   └── utils/
│       ├── data_utils.py (utility functions for data loading and pre-processing)
│       ├── gnn_utils.py (utility functions for GNN)
│       ├── plot_utils.py (utility functions for plotting training and evaluation results)
│       ├── swag_utils.py  (utility functions for SWAG)
│       └── torch_utils.py (utility functions for torch dataloader, checking if CUDA is available)
├── dataset/
│   ├── air_quality_measurements.csv (dataset of air quality measurements)
│   ├── street_cleaning.csv  (dataset of air street cleaning records)
│   ├── traffic.csv (dataset of traffic volumes)
│   ├── weather.csv  (dataset of weather observations)
│   └── visualize_data.py  (script to visualize all dataset)
├── main.py (main function with argument parsing to load data, build a model and evaluate (or train))
├── tests/
│   └── confidence_reliability.py (script to evaluate the reliability of confidence estimates of pretrained models)
│   └── epistemic_vs_aleatoric.py (script to show the impact of quantifying both epistemic and aleatoric uncertainties)
├── plots/ (foler containing all evaluation plots)
├── pretrained/ (foler containing pretrained models and training curves plots)
├── evaluate_all_models.sh (bash script for evaluating all models at once)
└── train_all_models.sh (bash script for training all models at once)

Evaluating Pretrained Models

Evaluate a pretrained model, for example:

python main.py --model=SWAG --task=regression --mode=evaluate  --adversarial_training

or evaluate all models:

bash evaluate_all_models.sh
drawing
PM-value regression using Graph Neural Network with MC dropout

Threshold-exceedance prediction

drawing
Threshold-exceedance prediction using Bayesian neural network (BNN)

Confidence Reliability

To evaluate the confidence reliability of the considered probabilistic models, run the following command:

python tests/confidence_reliability.py

It will generate the following plots:

drawing
Confidence reliability of probabilistic models in PM-value regression task in all monitoring stations.
drawing
Confidence reliability of probabilistic models in threshold-exceedance prediction task in all monitoring stations.

Epistemic and aleatoric uncertainties in decision making

To evaluate the impact of quantifying both epistemic and aleatoric uncertainties in decision making, run the following command:

python tests/epistemic_vs_aleatoric.py

It will generate the following plots:

Decision score in a non-probabilistic model
as a function of only aleatoric confidence.
Decision score in a probabilistic model as a function
of both epistemic and aleatoric confidences.
drawing drawing

It will also generate an .vtp file, which can be used to generate a 3D plot with detailed rendering and lighting in ParaView.

Training Models

Train a single model, for example:

python main.py --model=SWAG --task=regression --mode=train --n_epochs=3000 --adversarial_training

or train all models:

bash train_all_models.sh
drawing
Learning curve of training a BNNs model to forecast PM-values. Left: negative log-likelihood loss,
Center: KL loss estimated using MC sampling, Right: learning rate of exponential decay.

Dataset

Run the following command to visualize all data

python dataset/visualize_data.py

It will generate plots in the "dataset folder". For example:

drawing
Air quality level over two years in one representative monitoring station (Elgeseter) in Trondheim, Norway

Attribution

Owner
Abdulmajid Murad
PhD Student, Faculty of Information Technology and Electrical Engineering, NTNU
Abdulmajid Murad
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023
HiFi++: a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement

HiFi++ : a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement This is the unofficial implementation of Vocoder part of

Rishikesh (ऋषिकेश) 118 Dec 29, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 01, 2023
Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation

Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation By: Zayd Hammoudeh and Daniel Lowd Paper: Arxiv Preprint Coming soo

Zayd Hammoudeh 2 Oct 08, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
[NeurIPS 2021] Low-Rank Subspaces in GANs

Low-Rank Subspaces in GANs Figure: Image editing results using LowRankGAN on StyleGAN2 (first three columns) and BigGAN (last column). Low-Rank Subspa

112 Dec 28, 2022
Official Pytorch Implementation for Splicing ViT Features for Semantic Appearance Transfer presenting Splice

Splicing ViT Features for Semantic Appearance Transfer [Project Page] Splice is a method for semantic appearance transfer, as described in Splicing Vi

Omer Bar Tal 253 Jan 06, 2023
Image-Stitching - Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm

About The Project Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm (Random Sample Consensus). Author: Andreas P

Andreas Panayiotou 3 Jan 03, 2023
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022
学习 python3 以来写的一些垃圾玩具……

和东哥做兄弟 Author: chiupam 版权 未经本人同意,仓库内所有资源文件,禁止任何公众号、自媒体、开发者进行任何形式的转载、发布、搬运。 声明 这不是一个开源项目,只是把 GitHub 当作一个代码的存储空间,本项目不接受任何开源要求。 仅用于学习研究,禁止用于商业用途,不能保证其合法性

Chiupam 67 Mar 26, 2022
This is the official repository of XVFI (eXtreme Video Frame Interpolation)

XVFI This is the official repository of XVFI (eXtreme Video Frame Interpolation), https://arxiv.org/abs/2103.16206 Last Update: 20210607 We provide th

Jihyong Oh 195 Dec 29, 2022
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
ICML 21 - Voice2Series: Reprogramming Acoustic Models for Time Series Classification

Voice2Series-Reprogramming Voice2Series: Reprogramming Acoustic Models for Time Series Classification International Conference on Machine Learning (IC

49 Jan 03, 2023
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories This repo is the code release of EMNLP 2021 con

12 Nov 22, 2022