PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

Overview

Ultra-Fast-Lane-Detection

PyTorch implementation of the paper "Ultra Fast Structure-aware Deep Lane Detection".

[June 28, 2021] Updates: we will release an extended version, which improves 6.3 points of F1 on CULane with the ResNet-18 backbone compared with the ECCV version.

Updates: Our paper has been accepted by ECCV2020.

alt text

The evaluation code is modified from SCNN and Tusimple Benchmark.

Caffe model and prototxt can be found here.

Demo

Demo

Install

Please see INSTALL.md

Get started

First of all, please modify data_root and log_path in your configs/culane.py or configs/tusimple.py config according to your environment.

  • data_root is the path of your CULane dataset or Tusimple dataset.
  • log_path is where tensorboard logs, trained models and code backup are stored. It should be placed outside of this project.

For single gpu training, run

python train.py configs/path_to_your_config

For multi-gpu training, run

sh launch_training.sh

or

python -m torch.distributed.launch --nproc_per_node=$NGPUS train.py configs/path_to_your_config

If there is no pretrained torchvision model, multi-gpu training may result in multiple downloading. You can first download the corresponding models manually, and then restart the multi-gpu training.

Since our code has auto backup function which will copy all codes to the log_path according to the gitignore, additional temp file might also be copied if it is not filtered by gitignore, which may block the execution if the temp files are large. So you should keep the working directory clean.


Besides config style settings, we also support command line style one. You can override a setting like

python train.py configs/path_to_your_config --batch_size 8

The batch_size will be set to 8 during training.


To visualize the log with tensorboard, run

tensorboard --logdir log_path --bind_all

Trained models

We provide two trained Res-18 models on CULane and Tusimple.

Dataset Metric paper Metric This repo Avg FPS on GTX 1080Ti Model
Tusimple 95.87 95.82 306 GoogleDrive/BaiduDrive(code:bghd)
CULane 68.4 69.7 324 GoogleDrive/BaiduDrive(code:w9tw)

For evaluation, run

mkdir tmp
# This a bad example, you should put the temp files outside the project.

python test.py configs/culane.py --test_model path_to_culane_18.pth --test_work_dir ./tmp

python test.py configs/tusimple.py --test_model path_to_tusimple_18.pth --test_work_dir ./tmp

Same as training, multi-gpu evaluation is also supported.

Visualization

We provide a script to visualize the detection results. Run the following commands to visualize on the testing set of CULane and Tusimple.

python demo.py configs/culane.py --test_model path_to_culane_18.pth
# or
python demo.py configs/tusimple.py --test_model path_to_tusimple_18.pth

Since the testing set of Tusimple is not ordered, the visualized video might look bad and we do not recommend doing this.

Speed

To test the runtime, please run

python speed_simple.py  
# this will test the speed with a simple protocol and requires no additional dependencies

python speed_real.py
# this will test the speed with real video or camera input

It will loop 100 times and calculate the average runtime and fps in your environment.

Citation

@InProceedings{qin2020ultra,
author = {Qin, Zequn and Wang, Huanyu and Li, Xi},
title = {Ultra Fast Structure-aware Deep Lane Detection},
booktitle = {The European Conference on Computer Vision (ECCV)},
year = {2020}
}

Thanks

Thanks zchrissirhcz for the contribution to the compile tool of CULane, KopiSoftware for contributing to the speed test, and ustclbh for testing on the Windows platform.

Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Idan Achituve 66 Dec 20, 2022
Official code for our EMNLP2021 Outstanding Paper MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks

MindCraft Authors: Cristian-Paul Bara*, Sky CH-Wang*, Joyce Chai This is the official code repository for the paper (arXiv link): Cristian-Paul Bara,

Situated Language and Embodied Dialogue (SLED) Research Group 14 Dec 29, 2022
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official

AaltoML 7 Dec 23, 2022
Largest list of models for Core ML (for iOS 11+)

Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v

Kedan Li 5.6k Jan 08, 2023
Collection of NLP model explanations and accompanying analysis tools

Thermostat is a large collection of NLP model explanations and accompanying analysis tools. Combines explainability methods from the captum library wi

126 Nov 22, 2022
Clustergram - Visualization and diagnostics for cluster analysis in Python

Clustergram Visualization and diagnostics for cluster analysis Clustergram is a diagram proposed by Matthias Schonlau in his paper The clustergram: A

Martin Fleischmann 96 Dec 26, 2022
Fast convergence of detr with spatially modulated co-attention

Fast convergence of detr with spatially modulated co-attention Usage There are no extra compiled components in SMCA DETR and package dependencies are

peng gao 135 Dec 07, 2022
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)

ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h

Jooyoung Choi 225 Dec 28, 2022
Global Filter Networks for Image Classification

Global Filter Networks for Image Classification Created by Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, Jie Zhou This repository contains PyTorch

Yongming Rao 273 Dec 26, 2022
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
Implementation of Shape and Electrostatic similarity metric in deepFMPO.

DeepFMPO v3D Code accompanying the paper "On the value of using 3D-shape and electrostatic similarities in deep generative methods". The paper can be

34 Nov 28, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Collie do

ShopRunner 96 Dec 29, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

83 Nov 29, 2022
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023