The source code and dataset for the RecGURU paper (WSDM 2022)

Overview

RecGURU

About The Project

Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross-Domain Recommendation (WSDM 2022)"

Code Structure

RecGURU  
├── README.md                                 Read me file 
├── data_process                              Data processing methods
│   ├── __init__.py                           Package initialization file     
│   └── amazon_csv.py                         Code for processing the amazon data (in .csv format)
│   └── business_process.py                   Code for processing the collected data
│   └── item_frequency.py                     Calculate item frequency in each domain
│   └── run.sh                                Shell script to perform data processing  
├── GURU                                      Scripts for modeling, training, and testing 
│   ├── data                                  Dataloader package      
│     ├── __init__.py                         Package initialization file 
│     ├── data_loader.py                      Customized dataloaders 
│   └── tools                                 Tools such as loss function, evaluation metrics, etc.
│     ├── __init__.py                         Package initialization file
│     ├── lossfunction.py                     Customized loss functions
│     ├── metrics.py                          Evaluation metrics
│     ├── plot.py                             Plot function
│     ├── utils.py                            Other tools
│  ├── Transformer                            Transformer package
│     ├── __init__.py                         Package initialization 
│     ├── transformer.py                      transformer module
│  ├── AutoEnc4Rec.py                         Autoencoder based sequential recommender
│  ├── AutoEnc4Rec_cross.py                   Cross-domain recommender modules
│  ├── config_auto4rec.py                     Model configuration file
│  ├── gan_training.py                        Training methods of the GAN framework
│  ├── train_auto.py                          Main function for training and testing single-domain sequential recommender
│  ├── train_gan.py                           Main function for training and testing cross-domain sequential recommender
└── .gitignore                                gitignore file

Dataset

  1. The public datasets: Amazon view dataset at: https://nijianmo.github.io/amazon/index.html
  2. Collected datasets: https://drive.google.com/file/d/1NbP48emGPr80nL49oeDtPDR3R8YEfn4J/view
  3. Data processing:

Amazon dataset:

```shell
cd ../data_process
python amazon_csv.py   
```

Collected dataset

```shell
cd ../data_process
python business_process.py --rate 0.1  # portion of overlapping user = 0.1   
```

After data process, for each cross-domain scenario we have a dataset folder:

."a_domain"-"b_domain"
├── a_only.pickle         # users in domain a only
├── b_only.pickle         # users in domain b only
├── a.pickle              # all users in domain a
├── b.pickle              # all users in domain b
├── a_b.pickle            # overlapped users of domain a and b   

Note: see the code for processing details and make modifications accordingly.

Run

  1. Single-domain Methods:
    # SAS
    python train_auto.py --sas "True"
    # AutoRec (ours)
    python train_auto.py 
  2. Cross-Domain Methods:
    # RecGURU
    python train_gan.py --cross "True"
Owner
Chenglin Li
Chenglin Li
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
The code repository for "RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection" (ACM MM'21)

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection (ACM MM'21) By Zhuofan Zong, Qianggang Cao, Biao Leng Introduction F

TempleX 9 Jul 30, 2022
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 410 Jan 03, 2023
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
GE2340 project source code without credentials.

GE2340-Project-Public GE2340 project source code without credentials. Run the bot.py to start the bot Telegram: @jasperwong_ge2340_bot If the bot does

0 Feb 10, 2022
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"

CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation

106 Jan 04, 2023
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 123 Dec 23, 2022
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

DV Lab 116 Dec 20, 2022
Self-Learning - Books Papers, Courses & more I have to learn soon

Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask

Achint Chaudhary 968 Jan 02, 2022
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
Implementation of Basic Machine Learning Algorithms on small datasets using Scikit Learn.

Basic Machine Learning Algorithms All the basic Machine Learning Algorithms are implemented in Python using libraries Acknowledgements Machine Learnin

Piyal Banik 47 Oct 16, 2022