The source code and dataset for the RecGURU paper (WSDM 2022)

Overview

RecGURU

About The Project

Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross-Domain Recommendation (WSDM 2022)"

Code Structure

RecGURU  
├── README.md                                 Read me file 
├── data_process                              Data processing methods
│   ├── __init__.py                           Package initialization file     
│   └── amazon_csv.py                         Code for processing the amazon data (in .csv format)
│   └── business_process.py                   Code for processing the collected data
│   └── item_frequency.py                     Calculate item frequency in each domain
│   └── run.sh                                Shell script to perform data processing  
├── GURU                                      Scripts for modeling, training, and testing 
│   ├── data                                  Dataloader package      
│     ├── __init__.py                         Package initialization file 
│     ├── data_loader.py                      Customized dataloaders 
│   └── tools                                 Tools such as loss function, evaluation metrics, etc.
│     ├── __init__.py                         Package initialization file
│     ├── lossfunction.py                     Customized loss functions
│     ├── metrics.py                          Evaluation metrics
│     ├── plot.py                             Plot function
│     ├── utils.py                            Other tools
│  ├── Transformer                            Transformer package
│     ├── __init__.py                         Package initialization 
│     ├── transformer.py                      transformer module
│  ├── AutoEnc4Rec.py                         Autoencoder based sequential recommender
│  ├── AutoEnc4Rec_cross.py                   Cross-domain recommender modules
│  ├── config_auto4rec.py                     Model configuration file
│  ├── gan_training.py                        Training methods of the GAN framework
│  ├── train_auto.py                          Main function for training and testing single-domain sequential recommender
│  ├── train_gan.py                           Main function for training and testing cross-domain sequential recommender
└── .gitignore                                gitignore file

Dataset

  1. The public datasets: Amazon view dataset at: https://nijianmo.github.io/amazon/index.html
  2. Collected datasets: https://drive.google.com/file/d/1NbP48emGPr80nL49oeDtPDR3R8YEfn4J/view
  3. Data processing:

Amazon dataset:

```shell
cd ../data_process
python amazon_csv.py   
```

Collected dataset

```shell
cd ../data_process
python business_process.py --rate 0.1  # portion of overlapping user = 0.1   
```

After data process, for each cross-domain scenario we have a dataset folder:

."a_domain"-"b_domain"
├── a_only.pickle         # users in domain a only
├── b_only.pickle         # users in domain b only
├── a.pickle              # all users in domain a
├── b.pickle              # all users in domain b
├── a_b.pickle            # overlapped users of domain a and b   

Note: see the code for processing details and make modifications accordingly.

Run

  1. Single-domain Methods:
    # SAS
    python train_auto.py --sas "True"
    # AutoRec (ours)
    python train_auto.py 
  2. Cross-Domain Methods:
    # RecGURU
    python train_gan.py --cross "True"
Owner
Chenglin Li
Chenglin Li
OpenVisionAPI server

🚀 Quick start An instance of ova-server is free and publicly available here: https://api.openvisionapi.com Checkout ova-client for a quick demo. Inst

Open Vision API 93 Nov 24, 2022
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
Make differentially private training of transformers easy for everyone

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve

PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e

6 Jan 14, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR 2018).

Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR2018) By Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu and J

Zilong Huang 245 Dec 13, 2022
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Codes for NeurIPS 2021 paper "Adversarial Neuron Pruning Purifies Backdoored Deep Models"

Adversarial Neuron Pruning Purifies Backdoored Deep Models Code for NeurIPS 2021 "Adversarial Neuron Pruning Purifies Backdoored Deep Models" by Dongx

Dongxian Wu 31 Dec 11, 2022
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
Answering Open-Domain Questions of Varying Reasoning Steps from Text

This repository contains the authors' implementation of the Iterative Retriever, Reader, and Reranker (IRRR) model in the EMNLP 2021 paper "Answering Open-Domain Questions of Varying Reasoning Steps

26 Dec 22, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023