Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR 2018).

Overview

Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR2018)

By Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu and Jingdong Wang.

This code is a implementation of the weakly-supervised semantic segmentation experiments in the paper DSRG. The code is developed based on the Caffe framework.

Introduction

Overview of DSRG Overview of the proposed approach. The Deep Seeded Region Growing module takes the seed cues and segmentation map as input to produces latent pixel-wise supervision which is more accurate and more complete than seed cues. Our method iterates between refining pixel-wise supervision and optimizing the parameters of a segmentation network.

License

DSRG is released under the MIT License (refer to the LICENSE file for details).

Citing DSRG

If you find DSRG useful in your research, please consider citing:

@inproceedings{huang2018dsrg,
    title={Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing},
    author={Huang, Zilong and Wang, Xinggang and Wang, Jiasi and Liu, Wenyu and Wang, Jingdong},
    booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
    pages={7014--7023},
    year={2018}
}

Installing dependencies

  • Python packages:
      $ pip install -r python-dependencies.txt
  • caffe (deeplabv2 version): deeplabv2 caffe installation instructions are available at https://bitbucket.org/aquariusjay/deeplab-public-ver2. Note, you need to compile caffe with python wrapper and support for python layers. Then add the caffe python path into training/tools/findcaffe.py.

  • Fully connected CRF wrapper (requires the Eigen3 package).

      $ pip install CRF/

Training the DSRG model

  • Go into the training directory:
      $ cd training
      $ mkdir localization_cues
  • Download the initial VGG16 model pretrained on Imagenet and put it in training/ folder.

  • Download CAM seed and put it in training/localization_cues folder. We use CAM for localizing the foreground seed classes and utilize the saliency detection technology DRFI for localizing background seed. We provide the python interface to DRFI here for convenience if you want to generate the seed by yourself.

      $ cd training/experiment/seed_mc
      $ mkdir models
  • Set root_folder parameter in train-s.prototxt, train-f.prototxt and PASCAL_DIR in run-s.sh to the directory with PASCAL VOC 2012 images

  • Run:

      $ bash run.sh

The trained model will be created in models

Acknowledgment

This code is heavily borrowed from SEC.

Owner
Zilong Huang
HUSTer
Zilong Huang
The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network.

UNet-SIDE The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network. For Super Reso

TIANTIAN XU 1 Jan 13, 2022
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022
Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting #Dataset The folder "Dataset" contains the dataset use in this work and m

0 Jan 08, 2022
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

OBG-FCN This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742 Object

Jiu XU 3 Mar 11, 2019
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
Kaggle: Cell Instance Segmentation

Kaggle: Cell Instance Segmentation The goal of this challenge is to detect cells in microscope images. with simple view on how many cels have been ann

Jirka Borovec 9 Aug 12, 2022
Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch

disclaimer: this code is modified from pytorch-tutorial Image classification with synthetic gradient in Pytorch I implement the Decoupled Neural Inter

Andrew 114 Dec 22, 2022
Converts given image (png, jpg, etc) to amogus gif.

Image to Amogus Converter Converts given image (.png, .jpg, etc) to an amogus gif! Usage Place image in the /target/ folder (or anywhere realistically

Hank Magan 1 Nov 24, 2021
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
Western-3DSlicer-Modules - Point-Set Registrations for Ultrasound Probe Calibrations

Point-Set Registrations for Ultrasound Probe Calibrations -Undergraduate Thesis-

Matteo Tanzi 0 May 04, 2022
This is Unofficial Repo. Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection (CVPR 2021)

Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection This is a PyTorch implementation of the LipForensics paper. This is an U

Minha Kim 2 May 11, 2022