Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

Overview

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

Pytorch Implementation for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

If the project is useful to you, please give us a star. ⭐️

image

@article{gao2021disco,
  title={DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning},
  author={Gao, Yuting and Zhuang, Jia-Xin and Li, Ke and Cheng, Hao and Guo, Xiaowei and Huang, Feiyue and Ji, Rongrong and Sun, Xing},
  journal={arXiv preprint arXiv:2104.09124},
  year={2021}
}

Checkpoints

Teacher Models

Architecture Self-supervised Methods Model Checkpoints
ResNet152 MoCo-V2 Model
ResNet101 MoCo-V2 Model
ResNet50 MoCo-V2 Model

For teacher models such as ResNet-50*2 etc, we use their official implementation, which can be downloaded from their github pages.

Student Models by DisCo

Teacher/Students Efficient-B0 ResNet-18 Vit-Tiny XCiT-Tiny
ResNet-50 Model Model - -
ResNet-101 Model Model - -
ResNet-152 Model Model - -
ResNet-50*2 Model Model - -
ViT-Small - - Model -
XCiT-Small - - - Model

Requirements

  • Python3

  • Pytorch 1.6+

  • Detectron2

  • 8 GPUs are preferred

  • ImageNet, Cifar10/100, VOC, COCO

Run

Before running, we firstly move all data into share memory

cp /path/to/ImageNet /dev/shm

Pretrain Model

For pretraining baseline models with default hidden layer dimension in Tab1

# Switch to moco directory
cd moco

# R-50
python3 -u main_moco.py -a resnet50 --batch-size 256 --learning-rate 0.03 --mlp --moco-t 0.2 --aug-plus --cos --epochs 200 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --hidden 2048 /dev/shm/ 2>&1 | tee ./logs/std.log
python3 main_lincls.py -a resnet50 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm/ 2>&1 | tee ./logs/std.log

# R-101
python3 -u main_moco.py -a resnet101 --batch-size 256 --learning-rate 0.03 --mlp --moco-t 0.2 --aug-plus --cos --epochs 200 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --hidden 2048 /dev/shm/ 2>&1 | tee ./logs/std.log
python3 main_lincls.py -a resnet101 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm/ 2>&1 | tee ./logs/std.log

# R-152
python3 -u main_moco.py -a resnet152 --batch-size 256 --learning-rate 0.03 --mlp --moco-t 0.2 --aug-plus --cos --epochs 800 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --hidden 2048 /dev/shm/ 2>&1 | tee ./logs/std.log
python3 main_lincls.py -a resnet152 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0799.pth.tar /dev/shm/ 2>&1 | tee ./logs/std.log

# Mob
python3 -u main_moco.py -a mobilenetv3 --batch-size 256 --learning-rate 0.03 --mlp --moco-t 0.2 --aug-plus --cos --epochs 200 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --hidden 512 /dev/shm 2>&1 |  tee ./logs/std.log
#          Evaluation
python3 main_lincls.py -a mobilenetv3 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm/ 2>&1 | tee ./logs/std.log

# Effi-B0
python3 -u main_moco.py -a efficientb0 --batch-size 256 --learning-rate 0.03 --mlp --moco-t 0.2 --aug-plus --cos --epochs 200 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --hidden 1280 2>&1  |  tee ./logs/std.log
#          Evaluation
python3 main_lincls.py -a efficientb0 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm/ 2>&1 | tee ./logs/std.log

# Effi-B1
python3 -u main_moco.py -a efficientb1 --batch-size 256 --learning-rate 0.03 --mlp --moco-t 0.2 --aug-plus --cos --epochs 200 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0  --hidden 1280  /dev/shm  2>&1 | tee ./logs/std.log
#          Evaluation
python3 main_lincls.py -a efficientb1 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm/ 2>&1 | tee ./logs/std.log

# R-18
python3 -u main_moco.py -a resnet18 --batch-size 256 --learning-rate 0.03 --mlp --moco-t 0.2 --aug-plus --cos --epochs 200 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --hidden 1280 /dev/shm/ 2>&1 | tee ./logs/std.log
#          Evaluation
python3 main_lincls.py -a resnet18 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm/ 2>&1 | tee ./logs/std.log

# R-34
python3 -u main_moco.py -a resnet34 --batch-size 256 --learning-rate 0.03 --mlp --moco-t 0.2 --aug-plus --cos --epochs 200 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --hidden 1280 /dev/shm/ 2>&1 | tee ./logs/std.log
#          Evaluation
python3 main_lincls.py -a resnet34 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm/ 2>&1 | tee ./logs/std.log

DisCo

For training DisCo in Tab1, Comparision with baseline

# Switch to DisCo directory
cd DisCo

# R-50 & Effib0
python3 -u main.py -a efficientb0 --lr 0.03 --batch-size 256 --moco-t 0.2 --aug-plus --dist-url 'tcp://localhost:10043' --multiprocessing-distributed --world-size 1 --rank 0 --mlp --cos --teacher_arch resnet50 --teacher /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm/ 2>&1 | tee ./logs/std.log
#          Evaluation
python3 -u main_lincls.py -a efficientb0 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm 2>&1 | tee ./logs/std.log

# R50w2 & Effib0
python3 -u main.py -a efficientb0 --lr 0.03 --batch-size 256 --moco-t 0.2 --aug-plus --dist-url 'tcp://localhost:10043' --multiprocessing-distributed --world-size 1 --rank 0 --mlp --cos --teacher_arch resnet50w2 --teacher /path/to/swav_RN50w2_400ep_pretrain.pth.tar /dev/shm 2>&1 | tee ./logs/std.log
#          Evaluation
python3 yt_main_lincls.py -a resnet18 --learning-rate 30.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar  /dev/shm 2>&1 | tee ./logs/std.log

For Tab2, Linear evaluation top-1 accuracy (%) on ImageNet compared with different distillation methods.

# RKD+DisCo, Eff-b0
python3 -u main_moco_distill_rkd.py -a efficientb0 --lr 0.03 --batch-size 256 --moco-t 0.2 --aug-plus --dist-url 'tcp://localhost:10043' --multiprocessing-distributed --world-size 1 --rank 0 --mlp --cos --teacher /path/to/teacher_res50.pth.tar --use-mse /dev/shm  2>&1 | tee ./logs/std.log
#                  Evaluation
python3 -u main_lincls.py -a efficientb0 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm 2>&1 | tee ./logs/std.log

# RKD, Eff-b0
python3 -u main_moco_distill_rkd.py -a efficientb0 --lr 0.03 --batch-size 256 --moco-t 0.2 --aug-plus --dist-url 'tcp://localhost:10043' --multiprocessing-distributed --world-size 1 --rank 0 --mlp --cos --teacher /path/to/teacher_res50.pth.tar /dev/shm  2>&1 | tee ./logs/std.log
#                  Evaluation
python3 -u main_lincls.py -a efficientb0 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm 2>&1 | tee ./logs/std.log

For Tab3 , **Object detection and instance segmentation results **

# Cp data to /dev/shm and set up path for Detectron2
cp -r /path/to/VOCdevkit/* /dev/shm/
cp -r /path/to/coco_2017 /dev/shm/coco
export DETECTRON2_DATASETS=/dev/shm

pip install /youtu-reid/jiaxzhuang/acmm/detectron2-0.4+cu101-cp36-cp36m-linux_x86_64.whl
cd detection

# Convert model for Detectron2
python3 convert-pretrain-to-detectron2.py /path/ckpt/checkpoint_0199.pth.tar ./output.pkl

# Evaluation on VOC
python3 train_net.py --config-file configs/pascal_voc_R_50_C4_24k_moco.yaml --num-gpus 8 --resume MODEL.RESNETS.DEPTH 34 MODEL.RESNETS.RES2_OUT_CHANNELS 64 2>&1 | tee ../logs/std.log
# Evaluation on CoCo
python3 train_net.py --config-file configs/coco_R_50_C4_2x_moco.yaml --num-gpus 8  --resume MODEL.RESNETS.DEPTH 18 MODEL.RESNETS.RES2_OUT_CHANNELS 64 2>&1 | tee ../logs/std.log

For Fig5 , evaluation on Semi-Supervised Tasks

# Copy 1%, 10% ImageNet from the complete ImageNet, according to split from SimCLR.
cd data
# Need to set up path to Compelete ImageNet and the output path.
python3 -u imagenet_1_fraction.py --ratio 1
python3 -u imagenet_1_fraction.py --ratio 10

# Evaluation on 1% ImageNet with Eff-B0 by DisCo
cp -r /path/to/imagenet_1_fraction/train  /dev/shm
cp -r /path/to/imagenet_1_fraction/val  /dev/shm/
python3 -u main_lincls_semi.py -a efficientb0 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm  2>&1 | tee ./logs/std.log

# Evaluation on 10% ImageNet with R-18 by DisCo
cp -r /path/to/imagenet_10_fraction/train  /dev/shm
cp -r /path/to/imagenet_10_fraction/val  /dev/shm/
python3 -u main_lincls_semi.py -a resnet18 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm  2>&1 | tee ./logs/std.log

For Fig6, evaluation on Cifar10/Cifar100

# Copy Cifar10/100 to /dev/shm
cp /path/to/Cifar10/100 /dev/shm

# Evaluation on 1% Cifar10 with Eff-B0 by DisCo
python3 cifar_main_lincls.py -a efficientb0 --dataset cifar10 --lr 3 --epochs 200 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm 2>&1 | tee ./logs/std.log
# Evaluation on  Cifar100 with Resnet18 by DisCo
python3 cifar_main_lincls.py -a resnet18 --dataset cifar100 --lr 3 --epochs 200 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm 2>&1 | tee ./logs/std.log

For Tab4, Linear evaluation top-1 accuracy (%) on ImageNet, compared with SEED with consistent dimension in hidden layer.

python3 -u main.py -a efficientb0 --lr 0.03 --batch-size 256 --moco-t 0.2 --aug-plus --dist-url 'tcp://localhost:10043' --multiprocessing-distributed --world-size 1 --rank 0 --mlp --cos --teacher_arch resnet50 --teacher /path/to/ckpt/checkpoint_0199.pth.tar --hidden 2048 /dev/shm/ 2>&1 | tee ./logs/std.log
#          Evaluation
python3 -u main_lincls.py -a efficientb0 --learning-rate 3.0 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --pretrained /path/to/ckpt/checkpoint_0199.pth.tar /dev/shm 2>&1 | tee ./logs/std.log

For Tab5, Linear evaluation top-1 accuracy (%) on ImageNet with SwAV as the testbed.

# SwAV, Train with SwAV only
cd swav-master
python3 -m torch.distributed.launch --nproc_per_node=8 main_swav.py \
        --data_path /dev/shm/train \
        --base_lr 0.6 \
        --final_lr 0.0006 \
        --warmup_epochs 0 \
        --crops_for_assign 0 1 \
        --size_crops 224 96 \
        --nmb_crops 2 6 \
        --min_scale_crops 0.14 0.05 \
        --max_scale_crops 1. 0.14 \
        --use_fp16 true \
        --freeze_prototypes_niters 5005 \
        --queue_length 3840 \
        --epoch_queue_starts 15 \
        --dump_path ./ckpt \
        --sync_bn pytorch \
        --temperature 0.1 \
        --epsilon 0.05 \
        --sinkhorn_iterations 3 \
        --feat_dim 128 \
        --nmb_prototypes 3000 \
        --epochs 200 \
        --batch_size 64 \
        --wd 0.000001 \
        --arch efficientb0 \
        --use_fp16 true 2>&1 | tee ./logs/std.log
# Evaluation
python3 -m torch.distributed.launch --nproc_per_node=8 eval_linear.py --arch efficientb0 --data_path /dev/shm --pretrained /path/to/ckpt/checkpoints/ckp-199.pth 2>&1 | tee ./logs/std.log

# DisCo + SwAV
python3 -m torch.distributed.launch --nproc_per_node=8 main_swav_distill.py \
        --data_path /dev/shm/train \
        --base_lr 0.6 \
        --final_lr 0.0006 \
        --warmup_epochs 0 \
        --crops_for_assign 0 1 \
        --size_crops 224 96 \
        --nmb_crops 2 6 \
        --min_scale_crops 0.14 0.05 \
        --max_scale_crops 1. 0.14 \
        --use_fp16 true \
        --freeze_prototypes_niters 5005 \
        --queue_length 3840 \
        --epoch_queue_starts 15 \
        --dump_path ./ckpt \
        --sync_bn pytorch \
        --temperature 0.1 \
        --epsilon 0.05 \
        --sinkhorn_iterations 3 \
        --feat_dim 128 \
        --nmb_prototypes 3000 \
        --epochs 200 \
        --batch_size 64 \
        --wd 0.000001 \
        --arch efficientb0 \
        --pretrained /path/to/swav_800ep_pretrain.pth.tar 2>&1 | tee ./logs/std.log

For Tab6, Linear evaluation top-1 accuracy (%) on ImageNet with variants of teacher pre-training methods.

# SwAV
python3 -u main.py -a resnet34 --lr 0.03 --batch-size 256 --moco-t 0.2 --aug-plus --dist-url 'tcp://localhost:10043' --multiprocessing-distributed --world-size 1 --rank 0 --mlp --cos --teacher_arch SWAVresnet50 --teacher /path/to/swav_800ep_pretrain.pth.tar /dev/shm 2>&1 | tee ./logs/std.log

Visualization

cd DisCo
# Generate Embed
# Move Embed to data path

python -u draw.py

Thanks

Code heavily depends on MoCo-V2, Detectron2.

PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".

A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa

10 Nov 14, 2022
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".

Mugs: A Multi-Granular Self-Supervised Learning Framework This is a PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-

Sea AI Lab 62 Nov 08, 2022
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create

Vector AI 267 Dec 23, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
Mask-invariant Face Recognition through Template-level Knowledge Distillation

Mask-invariant Face Recognition through Template-level Knowledge Distillation This is the official repository of "Mask-invariant Face Recognition thro

Fadi Boutros 35 Dec 06, 2022
links and status of cool gradio demos

awesome-demos This is a list of some wonderful demos & applications built with Gradio. Here's how to contribute yours! 🖊️ Natural language processing

Gradio 96 Dec 30, 2022
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Casual GAN Papers 259 Dec 28, 2022
Soomvaar is the repo which 🏩 contains different collection of 👨‍💻🚀code in Python and 💫✨Machine 👬🏼 learning algorithms📗📕 that is made during 📃 my practice and learning of ML and Python✨💥

Soomvaar 📌 Introduction Soomvaar is the collection of various codes implement in machine learning and machine learning algorithms with python on coll

Felix-Ayush 42 Dec 30, 2022
Code for the paper: Fighting Fake News: Image Splice Detection via Learned Self-Consistency

Fighting Fake News: Image Splice Detection via Learned Self-Consistency [paper] [website] Minyoung Huh *12, Andrew Liu *1, Andrew Owens1, Alexei A. Ef

minyoung huh (jacob) 174 Dec 09, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the ge

Phil Wang 5k Jan 04, 2023
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
Double pendulum simulator using a symplectic Euler's method and Hamiltonian mechanics

Symplectic Double Pendulum Simulator Double pendulum simulator using a symplectic Euler's method. The program calculates the momentum and position of

Scott Marino 1 Jan 12, 2022