Global-Local Attention for Emotion Recognition

Overview

Global-Local Attention for Emotion Recognition

Requirements

  • Python 3
  • Install tensorflow (or tensorflow-gpu) >= 2.0.0
  • Install some other packages
pip install cython
pip install opencv-python==4.3.0.36 matplotlib numpy==1.18.5 dlib

Dataset

We provide the NCAER-S dataset with original images and extracted faces (a .txt file with 4 bounding box coordinate) in the NCAERS dataset.

The dataset can be downloaded at Google Drive

Note that the dataset and label should have structure like the followings:

NCAER-S 
│
└───images
│   │
│   └───class_1
│   │   │   img1.jpg
│   │   │   img2.jpg
│   │   │   ...
│   └───class_2
│       │   img1.jpg
│       │   img2.jpg
│       │   ...
│   
└───crop
│   │
│   └───class_1
│   │   │   img1.txt
│   │   │   img2.txt
│   │   │   ...
│   └───class_2
│       │   img1.txt
│       │   img2.txt
│       │   ...

Running

Our code supports these types of execution with argument -m or --mode:

#extract faces from <train, val or test> dataset (specified in config.py)
python run.py -m extract dataset_type=train

#train the model with config specified in the config.py
python run.py -m train 

#evaluate the trained model on the dataset <dataset_type>
python run.py -m eval --dataset_type=test --trained_weights=path/to/weights

Evaluation

Our trained model is available at weights/glamor-net/Model.

  • Firstly, please download the dataset and extract it into "data/" directory.
  • Then specified the path to the test data (images and crop):
config = config.copy({
    'test_images': 'path_to_test_images',
    'test_crop':   'path_to_test_cropped_faces' #(.txt files),
})
  • Run this command to evaluate the model. We are using the classification accuracy as our evaluation metric.
# Evaluate our model in the test set
python run.py -m eval --dataset_type=test --trained_weights=weights/glamor-net/Model

Training

Firstly please extract the faces from train set (val set is optional)

  • Specify the path to the dataset in config.py (train_images, val_images, test_images)
  • Specify the desired face-extracted output path in config.py (train_crop, val_crop, test_crop)
config = config.copy({

    'train_images': 'path_to_training_images',
    'train_crop':   'path_to_training_cropped_faces' #(.txt files),

    'val_images': 'path_to_validation_images',
    'val_crop':   'path_to_validation_cropped_faces' #(.txt files)

})
  • Perform face extraction on both dataset_type by running the commands:
python run.py -m extract --dataset_type=<train, val or test>

Start training:

# Train a new model from sratch
python run.py -m train 

# Continue training a model that you had trained earlier
python run.py -m train --resume=path/to/trained_weights

# Resume the last checkpoint model
python run.py -m train --resume=last

Prediction

We support prediction on single image or on images in a directory by running this command:

# Predict on single image
python predict.py --trained_weights=weights/glamor-net/Model --input=test_images/1.jpg --output=path/to/out/directory

# Predict on images in directory
python predict.py --trained_weights=weights/glamor-net/Model --input=test_images/ --output=out/

Use the help option to see a description of all available command line arguments

Owner
Minh Nhat Le
Hi
Minh Nhat Le
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

Friederike Metz 7 Apr 23, 2022
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
A list of Machine Learning Art Colabs

ML Visual Art Colabs A list of cool Colabs on Machine Learning Imagemaking or other artistic purposes 3D Ken Burns Effect Ken Burns Effect by Manuel R

Derrick Schultz (he/him) 789 Dec 12, 2022
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages

PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages Abstract NLP applications for code-mixed (CM) or mix-li

Mohsin Ali, Mohammed 1 Nov 12, 2021
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model This repository is the official PyTorch implementation of GraphRNN, a graph gene

Jiaxuan 568 Dec 29, 2022
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Lukas Hedegaard 21 Dec 22, 2022
This repository compare a selfie with images from identity documents and response if the selfie match.

aws-rekognition-facecompare This repository compare a selfie with images from identity documents and response if the selfie match. This code was made

1 Jan 27, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
This repository contains the scripts for downloading and validating scripts for the documents

HC4: HLTCOE CLIR Common-Crawl Collection This repository contains the scripts for downloading and validating scripts for the documents. Document ids,

JHU Human Language Technology Center of Excellence 6 Jun 07, 2022
Arbitrary Distribution Modeling with Censorship in Real Time 59 2 60 3 Bidding Advertising for KDD'21

Arbitrary_Distribution_Modeling This repo implements the Neighborhood Likelihood Loss (NLL) and Arbitrary Distribution Modeling (ADM, with Interacting

7 Jan 03, 2023
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022
An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

OptiCL OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in wh

Holly Wiberg 57 Dec 26, 2022
Python Actor concurrency library

Thespian Actor Library This library provides the framework of an Actor model for use by applications implementing Actors. Thespian Site with Documenta

Kevin Quick 177 Dec 11, 2022