A PyTorch Implementation of FaceBoxes

Overview

FaceBoxes in PyTorch

License

By Zisian Wong, Shifeng Zhang

A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The official code in Caffe can be found here.

Performance

Dataset Original Caffe PyTorch Implementation
AFW 98.98 % 98.55%
PASCAL 96.77 % 97.05%
FDDB 95.90 % 96.00%

Citation

Please cite the paper in your publications if it helps your research:

@inproceedings{zhang2017faceboxes,
  title = {Faceboxes: A CPU Real-time Face Detector with High Accuracy},
  author = {Zhang, Shifeng and Zhu, Xiangyu and Lei, Zhen and Shi, Hailin and Wang, Xiaobo and Li, Stan Z.},
  booktitle = {IJCB},
  year = {2017}
}

Contents

Installation

  1. Install PyTorch >= v1.0.0 following official instruction.

  2. Clone this repository. We will call the cloned directory as $FaceBoxes_ROOT.

git clone https://github.com/zisianw/FaceBoxes.PyTorch.git
  1. Compile the nms:
./make.sh

Note: Codes are based on Python 3+.

Training

  1. Download WIDER FACE dataset, place the images under this directory:
$FaceBoxes_ROOT/data/WIDER_FACE/images
  1. Convert WIDER FACE annotations to VOC format or download our converted annotations, place them under this directory:
$FaceBoxes_ROOT/data/WIDER_FACE/annotations
  1. Train the model using WIDER FACE:
cd $FaceBoxes_ROOT/
python3 train.py

If you do not wish to train the model, you can download our pre-trained model and save it in $FaceBoxes_ROOT/weights.

Evaluation

  1. Download the images of AFW, PASCAL Face and FDDB to:
$FaceBoxes_ROOT/data/AFW/images/
$FaceBoxes_ROOT/data/PASCAL/images/
$FaceBoxes_ROOT/data/FDDB/images/
  1. Evaluate the trained model using:
# dataset choices = ['AFW', 'PASCAL', 'FDDB']
python3 test.py --dataset FDDB
# evaluate using cpu
python3 test.py --cpu
# visualize detection results
python3 test.py -s --vis_thres 0.3
  1. Download eval_tool to evaluate the performance.

References

  • Official release (Caffe)

  • A huge thank you to SSD ports in PyTorch that have been helpful:

    Note: If you can not download the converted annotations, the provided images and the trained model through the above links, you can download them through BaiduYun.

Owner
Zi Sian Wong
Computer Vision & Deep Learning
Zi Sian Wong
Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network

Leaded Gradient Method (LGM) This repository contains the PyTorch implementation for paper Dynamics-aware Adversarial Attack of 3D Sparse Convolution

An Tao 2 Oct 18, 2022
This repository contains the DendroMap implementation for scalable and interactive exploration of image datasets in machine learning.

DendroMap DendroMap is an interactive tool to explore large-scale image datasets used for machine learning. A deep understanding of your data can be v

DIV Lab 33 Dec 30, 2022
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
Vit-ImageClassification - Pytorch ViT for Image classification on the CIFAR10 dataset

Vit-ImageClassification Introduction This project uses ViT to perform image clas

Kaicheng Yang 4 Jun 01, 2022
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Tejas Prajapati 16 Sep 11, 2021
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
Configure SRX interfaces with Scrapli

Configure SRX interfaces with Scrapli Overview This example will show how to configure interfaces on Juniper's SRX firewalls. In addition to the Pytho

Calvin Remsburg 1 Jan 07, 2022
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.

Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil

AaltoML 165 Nov 27, 2022
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

ETHZ ASL 101 Dec 01, 2022
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

End-to-End Object Detection with Learnable Proposal, CVPR2021

Peize Sun 1.2k Dec 27, 2022
How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

Bogdan Kulynych 49 Nov 05, 2022
ReAct: Out-of-distribution Detection With Rectified Activations

ReAct: Out-of-distribution Detection With Rectified Activations This is the source code for paper ReAct: Out-of-distribution Detection With Rectified

38 Dec 05, 2022
Implementation of Heterogeneous Graph Attention Network

HetGAN Implementation of Heterogeneous Graph Attention Network This is the code repository of paper "Prediction of Metro Ridership During the COVID-19

5 Dec 28, 2021
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022