Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Overview

Implicit3DUnderstanding (Im3D) [Project Page]

Holistic 3D Scene Understanding from a Single Image with Implicit Representation

Cheng Zhang, Zhaopeng Cui, Yinda Zhang, Shuaicheng Liu, Bing Zeng, Marc Pollefeys

img.jpg 3dbbox.png recon.png
img.jpg 3dbbox.png recon.png
img.jpg 3dbbox.png recon.png

pipeline

Introduction

This repo contains training, testing, evaluation, visualization code of our CVPR 2021 paper. Specially, the repo contains our PyTorch implementation of the decoder of LDIF, which can be extracted and used in other projects. We are expecting to release a refactored version of our pipeline and a PyTorch implementation of the full LDIF model in the future.

Install

sudo apt install xvfb ninja-build
conda env create -f environment.yml
conda activate Im3D
python project.py build

Demo

  1. Download the pretrained checkpoint and unzip it into out/total3d/20110611514267/

  2. Change current directory to Implicit3DUnderstanding/ and run the demo, which will generate 3D detection result and rendered scene mesh to demo/output/1/

    CUDA_VISIBLE_DEVICES=0 python main.py out/total3d/20110611514267/out_config.yaml --mode demo --demo_path demo/inputs/1
    
  3. In case you want to run it off screen (for example, with SSH)

    CUDA_VISIBLE_DEVICES=0 xvfb-run -a -s "-screen 0 800x600x24" python main.py out/total3d/20110611514267/out_config.yaml --mode demo --demo_path demo/inputs/1
    
  4. If you want to run it interactively, change the last line of demo.py

    scene_box.draw3D(if_save=True, save_path = '%s/recon.png' % (save_path))
    

    to

    scene_box.draw3D(if_save=False, save_path = '%s/recon.png' % (save_path))
    

Data preparation

We follow Total3DUnderstanding to use SUN-RGBD to train our Scene Graph Convolutional Network (SGCN), and use Pix3D to train our Local Implicit Embedding Network (LIEN) with Local Deep Implicit Functions (LDIF) decoder.

Preprocess SUN-RGBD data

Please follow Total3DUnderstanding to directly download the processed train/test data.

In case you prefer processing by yourself or want to evaluate 3D detection with our code (To ultilize the evaluation code of Coop, we modified the data processing code of Total3DUnderstanding to save parameters for transforming the coordinate system from Total3D back to Coop), please follow these steps:

  1. Follow Total3DUnderstanding to download the raw data.

  2. According to issue #6 of Total3DUnderstanding, there are a few typos in json files of SUNRGBD dataset, which is mostly solved by the json loader. However, one typo still needs to be fixed by hand. Please find {"name":""propulsion"tool"} in data/sunrgbd/Dataset/SUNRGBD/kv2/kinect2data/002922_2014-06-26_15-43-16_094959634447_rgbf000089-resize/annotation2Dfinal/index.json and remove ""propulsion.

  3. Process the data by

    python -m utils.generate_data
    

Preprocess Pix3D data

We use a different data process pipeline with Total3DUnderstanding. Please follow these steps to generate the train/test data:

  1. Download the Pix3D dataset to data/pix3d/metadata

  2. Run below to generate the train/test data into 'data/pix3d/ldif'

    python utils/preprocess_pix3d4ldif.py
    

Training and Testing

We use wandb for logging and visualization. You can register a wandb account and login before training by wandb login. In case you don't need to visualize the training process, you can put WANDB_MODE=dryrun before the commands bellow.

Thanks to the well-structured code of Total3DUnderstanding, we use the same method to manage parameters of each experiment with configuration files (configs/****.yaml). We first follow Total3DUnderstanding to pretrain each individual module, then jointly finetune the full model with additional physical violation loss.

Pretraining

We use the pretrained checkpoint of Total3DUnderstanding to load weights for ODN. Please download and rename the checkpoint to out/pretrained_models/total3d/model_best.pth. Other modules can be trained then tested with the following steps:

  1. Train LEN by:

    python main.py configs/layout_estimation.yaml
    

    The pretrained checkpoint can be found at out/layout_estimation/[start_time]/model_best.pth

  2. Train LIEN + LDIF by:

    python main.py configs/ldif.yaml
    

    The pretrained checkpoint can be found at out/ldif/[start_time]/model_best.pth

    The training process is followed with a quick test without ICP and Chamfer distance evaluated. In case you want to align mesh and evaluate the Chamfer distance during testing:

    python main.py configs/ldif.yaml --mode train
    

    The generated object meshes can be found at out/ldif/[start_time]/visualization

  3. Replace the checkpoint directories of LEN and LIEN in configs/total3d_ldif_gcnn.yaml with the checkpoints trained above, then train SGCN by:

    python main.py configs/total3d_ldif_gcnn.yaml
    

    The pretrained checkpoint can be found at out/total3d/[start_time]/model_best.pth

Joint finetune

  1. Replace the checkpoint directory in configs/total3d_ldif_gcnn_joint.yaml with the one trained in the last step above, then train the full model by:

    python main.py configs/total3d_ldif_gcnn_joint.yaml
    

    The trained model can be found at out/total3d/[start_time]/model_best.pth

  2. The training process is followed with a quick test without scene mesh generated. In case you want to generate the scene mesh during testing (which will cost a day on 1080ti due to the unoptimized interface of LDIF CUDA kernel):

    python main.py configs/total3d_ldif_gcnn_joint.yaml --mode train
    

    The testing resaults can be found at out/total3d/[start_time]/visualization

Testing

  1. The training process above already include a testing process. In case you want to test LIEN+LDIF or full model by yourself:

    python main.py out/[ldif/total3d]/[start_time]/model_best.pth --mode test
    

    The results will be saved to out/total3d/[start_time]/visualization and the evaluation metrics will be logged to wandb as run summary.

  2. Evaluate 3D object detection with our modified matlab script from Coop:

    external/cooperative_scene_parsing/evaluation/detections/script_eval_detection.m
    

    Before running the script, please specify the following parameters:

    SUNRGBD_path = 'path/to/SUNRGBD';
    result_path = 'path/to/experiment/results/visualization';
    
  3. Visualize the i-th 3D scene interacively by

    python utils/visualize.py --result_path out/total3d/[start_time]/visualization --sequence_id [i]
    

    or save the 3D detection result and rendered scene mesh by

    python utils/visualize.py --result_path out/total3d/[start_time]/visualization --sequence_id [i] --save_path []
    

    In case you do not have a screen:

    python utils/visualize.py --result_path out/total3d/[start_time]/visualization --sequence_id [i] --save_path [] --offscreen
    

    If nothing goes wrong, you should get results like:

    camera view 3D bbox scene reconstruction

  4. Visualize the detection results from a third person view with our modified matlab script from Coop:

    external/cooperative_scene_parsing/evaluation/vis/show_result.m
    

    Before running the script, please specify the following parameters:

    SUNRGBD_path = 'path/to/SUNRGBD';
    save_root = 'path/to/save/the/detection/results';
    paths = {
        {'path/to/save/detection/results', 'path/to/experiment/results/visualization'}, ...
        {'path/to/save/gt/boundingbox/results'}
    };
    vis_pc = false; % or true, if you want to show cloud point ground truth
    views3d = {'oblique', 'top'}; % choose prefered view
    dosave = true; % or false, please place breakpoints to interactively view the results.
    

    If nothing goes wrong, you should get results like:

    oblique view 3D bbox

About the testing speed

Thanks to the simplicity of LIEN+LDIF, the pretrain takes only about 8 hours on a 1080Ti. However, although we used the CUDA kernel of LDIF to optimize the speed, the file-based interface of the kernel still bottlenecked the mesh reconstruction. This is the main reason why our method takes much more time in object and scene mesh reconstruction. If you want speed over mesh quality, please lower the parameter data.marching_cube_resolution in the configuration file.

Citation

If you find our work and code helpful, please consider cite:

@article{zhang2021holistic,
  title={Holistic 3D Scene Understanding from a Single Image with Implicit Representation},
  author={Zhang, Cheng and Cui, Zhaopeng and Zhang, Yinda and Zeng, Bing and Pollefeys, Marc and Liu, Shuaicheng},
  journal={arXiv preprint arXiv:2103.06422},
  year={2021}
}

We thank the following great works:

  • Total3DUnderstanding for their well-structured code. We construct our network based on their well-structured code.
  • Coop for their dataset. We used their processed dataset with 2D detector prediction.
  • LDIF for their novel representation method. We ported their LDIF decoder from Tensorflow to PyTorch.
  • Graph R-CNN for their scene graph design. We adopted their GCN implemention to construct our SGCN.
  • Occupancy Networks for their modified version of mesh-fusion pipeline.

If you find them helpful, please cite:

@InProceedings{Nie_2020_CVPR,
author = {Nie, Yinyu and Han, Xiaoguang and Guo, Shihui and Zheng, Yujian and Chang, Jian and Zhang, Jian Jun},
title = {Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction for Indoor Scenes From a Single Image},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}
@inproceedings{huang2018cooperative,
  title={Cooperative Holistic Scene Understanding: Unifying 3D Object, Layout, and Camera Pose Estimation},
  author={Huang, Siyuan and Qi, Siyuan and Xiao, Yinxue and Zhu, Yixin and Wu, Ying Nian and Zhu, Song-Chun},
  booktitle={Advances in Neural Information Processing Systems},
  pages={206--217},
  year={2018}
}	
@inproceedings{genova2020local,
    title={Local Deep Implicit Functions for 3D Shape},
    author={Genova, Kyle and Cole, Forrester and Sud, Avneesh and Sarna, Aaron and Funkhouser, Thomas},
    booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
    pages={4857--4866},
    year={2020}
}
@inproceedings{yang2018graph,
    title={Graph r-cnn for scene graph generation},
    author={Yang, Jianwei and Lu, Jiasen and Lee, Stefan and Batra, Dhruv and Parikh, Devi},
    booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
    pages={670--685},
    year={2018}
}
@inproceedings{mescheder2019occupancy,
  title={Occupancy networks: Learning 3d reconstruction in function space},
  author={Mescheder, Lars and Oechsle, Michael and Niemeyer, Michael and Nowozin, Sebastian and Geiger, Andreas},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={4460--4470},
  year={2019}
}
Owner
Cheng Zhang
Cheng Zhang of UESTC 电子科技大学 通信学院 章程
Cheng Zhang
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

77 Dec 24, 2022
Self-Learning - Books Papers, Courses & more I have to learn soon

Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask

Achint Chaudhary 968 Jan 02, 2022
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

569 Dec 30, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Panoptic Mapping This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based

ETHZ ASL 194 Dec 20, 2022
Code I use to automatically update my videos' metadata on YouTube

mCodingYouTube This repository contains the code I use to automatically update my videos' metadata on YouTube, including: titles, descriptions, tags,

James Murphy 19 Oct 07, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

AugMax: Adversarial Composition of Random Augmentations for Robust Training Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, an

VITA 112 Nov 07, 2022
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022
CVNets: A library for training computer vision networks

CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it

Apple 1.1k Jan 03, 2023
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023
Implementation of CVPR'2022:Surface Reconstruction from Point Clouds by Learning Predictive Context Priors

Surface Reconstruction from Point Clouds by Learning Predictive Context Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository c

136 Dec 12, 2022
A small fun project using python OpenCV, mediapipe, and pydirectinput

Here I tried a small fun project using python OpenCV, mediapipe, and pydirectinput. Here we can control moves car game when yellow color come to right box (press key 'd') left box (press key 'a') lef

Sameh Elisha 3 Nov 17, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
Using CNN to mimic the driver based on training data from Torcs

Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from

Sudharshan 2 Jan 05, 2022