The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

Related tags

Deep LearningRegSeg
Overview

RegSeg

The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

Paper: arxiv

params

D block

DBlock

Decoder

Decoder

Setup

Install the dependencies in requirements.txt by using pip and virtualenv.

Download Cityscapes

go to https://www.cityscapes-dataset.com, create an account, and download gtFine_trainvaltest.zip and leftImg8bit_trainvaltest.zip. You can delete the test images to save some space if you don't want to submit to the competition. Name the directory cityscapes_dataset. Make sure that you have downloaded the required python packages and run

CITYSCAPES_DATASET=cityscapes_dataset csCreateTrainIdLabelImgs

There are 19 classes.

Results from paper

To see the ablation studies results from the paper, go here.

Usage

To visualize your model, go to show.py. To train, validate, benchmark, and save the results of your model, go to train.py.

Results on Cityscapes server

RegSeg (exp48_decoder26, 30FPS): 78.3

Larger RegSeg (exp53_decoder29, 20 FPS): 79.5

Citation

If you find our work helpful, please consider citing our paper.

@article{gao2021rethink,
  title={Rethink Dilated Convolution for Real-time Semantic Segmentation},
  author={Gao, Roland},
  journal={arXiv preprint arXiv:2111.09957},
  year={2021}
}
Comments
  • question about STDC2-Seg75

    question about STDC2-Seg75

    Hi, I note that you benchmark the computation of STDC2-Seg75 which is not reported in the CVPR2021 paper. Did you test the speed of STDC-Seg on your own platform? How about the results?

    opened by ydhongHIT 2
  • Can not show.py

    Can not show.py

    I try show.py. But I can not.

    $ python3 show.py
    name= cityscapes
    train size: 2975
    val size: 500
    Traceback (most recent call last):
      File "show.py", line 358, in <module>
        show_cityscapes_model()
      File "show.py", line 337, in show_cityscapes_model
        show(model,val_loader,device,show_cityscapes_mask,num_images=num_images,skip=skip,images_per_line=images_per_line)
      File "show.py", line 134, in show
        outputs = model(images)
      File "/home/sounansu/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/sounansu/RegSeg/model.py", line 76, in forward
        x=self.stem(x)
      File "/home/sounansu/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/sounansu/RegSeg/blocks.py", line 22, in forward
        x = self.conv(x)
      File "/home/sounansu/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/sounansu/.local/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 446, in forward
        return self._conv_forward(input, self.weight, self.bias)
      File "/home/sounansu/.local/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 442, in _conv_forward
        return F.conv2d(input, weight, bias, self.stride,
    RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same
    
    opened by sounansu 2
  • The pretrained model link

    The pretrained model link

    Hi, thank you for sharing the code. Can you provide download link about the pretrained model(exp48_decoder26 and exp53_decoder29) in Cityscapes dataset, Thank you very much!

    opened by gaowq2017 1
  • About train bug

    About train bug

    When using seg_transforms.py through your scripts 'camvid_efficientnet_b1_hyperseg-s', there always exsist 'TypeError: resize() got an unexpected keyword argument 'interpolation'' in 174 line. Does this bug only appear in this scripts and should I modify the code when using this scripts?

    opened by 870572761 0
  • CVE-2007-4559 Patch

    CVE-2007-4559 Patch

    Patching CVE-2007-4559

    Hi, we are security researchers from the Advanced Research Center at Trellix. We have began a campaign to patch a widespread bug named CVE-2007-4559. CVE-2007-4559 is a 15 year old bug in the Python tarfile package. By using extract() or extractall() on a tarfile object without sanitizing input, a maliciously crafted .tar file could perform a directory path traversal attack. We found at least one unsantized extractall() in your codebase and are providing a patch for you via pull request. The patch essentially checks to see if all tarfile members will be extracted safely and throws an exception otherwise. We encourage you to use this patch or your own solution to secure against CVE-2007-4559. Further technical information about the vulnerability can be found in this blog.

    If you have further questions you may contact us through this projects lead researcher Kasimir Schulz.

    opened by TrellixVulnTeam 0
  • About train code

    About train code

    When training, how did the miou and accuracy calculate? On train dataset or validate dataset? I think it's calculated on val dataset due to https://github.com/RolandGao/RegSeg/blob/main/train.py#L238. I trained the base regseg model with config cityscapes_trainval_1000epochs.yam on Cityscapes and got the unbelievable results. 840794c66f23deb33666dcffc4af5b5

    opened by Asthestarsfalll 6
  • confusion on field of view  and model inference time

    confusion on field of view and model inference time

    Hi, RolandGao, nice to see a good job! I see you've done a lot of experiments on the backbone setting, but I still have some confusion after reading your published paper.

    • First, You calculate the fov of 4095 to see the bottom-right pixel when training cityscape (1024x2048), so you have verify the backbone should be exp48 [ (1,1) + (1,2) + 4 * (1, 4) + 7 *(1, 14) ] with fov (3807). But I also find the same backbone when training the CamVid (720x960). Why not use a shallow backbone? I am training my own dataset with image resolution (512 x 512), do I need to modify the backbone architecture? Can you give some advice?
    • Second, I test inference time of regseg. I notice that the speed is not better than other real-time archs due to split and dilated conv even if model costs low GFLOPs. In the application, what we are concerned about is the speed, so is there any strategy to improve the speed?
    opened by LinaShanghaitech 5
  • Why not pretrain on ImageNet?

    Why not pretrain on ImageNet?

    Hi, Thanks for your excellent work ! I notice that RegSeg can achieve a high accuracy on Cityscapes without pretraining. I also did a lot of ablation studies and I think DDRNet will drop around 3% miou if they do not use ImageNet pretraining. How about trying to train your encoder on ImageNet and see what will happen? I really look forward to your result ! Thanks !

    opened by RobinhoodKi 1
Owner
Roland
University of Toronto CS 2023
Roland
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Vision and Learning Group 243 Jan 09, 2023
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

Wang Yucheng 30 Dec 18, 2022
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time

David Álvarez de la Torre 0 Feb 09, 2022
RL agent to play μRTS with Stable-Baselines3

Gym-μRTS with Stable-Baselines3/PyTorch This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS usin

Oleksii Kachaiev 24 Nov 11, 2022
Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles

Workspace Permissions Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles. Features Configure foreach workspace

Patrick.St. 18 Sep 26, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
基于PaddleClas实现垃圾分类,并转换为inference格式用PaddleHub服务端部署

百度网盘链接及提取码: 链接:https://pan.baidu.com/s/1HKpgakNx1hNlOuZJuW6T1w 提取码:wylx 一个垃圾分类项目带你玩转飞桨多个产品(1) 基于PaddleClas实现垃圾分类,导出inference模型并利用PaddleHub Serving进行服务

thomas-yanxin 22 Jul 12, 2022
Codeflare - Scale complex AI/ML pipelines anywhere

Scale complex AI/ML pipelines anywhere CodeFlare is a framework to simplify the integration, scaling and acceleration of complex multi-step analytics

CodeFlare 169 Nov 29, 2022
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;

MoViNet-pytorch Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition. Authors: Dan Kondratyuk, Liangzh

189 Dec 20, 2022
Instant-nerf-pytorch - NeRF trained SUPER FAST in pytorch

instant-nerf-pytorch This is WORK IN PROGRESS, please feel free to contribute vi

94 Nov 22, 2022
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets"

Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Data

2 Oct 06, 2022
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb

Google Research 135 Dec 27, 2022