Python package for machine learning for healthcare using a OMOP common data model

Overview

omop-learn

What is omop-learn?

This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database. omop-learn supports the easy definition of predictive clinical tasks, featurizations of OMOP data, and cohorts of relevance. We further provide methods using sparse tensor implementations to rapidly manipulate the collected features in the rawest form possible, allowing for dynamic transformations of the data.

Two machine-learning models are included with the library. First, a windowed linear model, which uses various backwards-facing windows to aggregate features over different timescales, then feeds these features into a regularized logistic regression model. This model was inspired by the work of Razavian et. al. '15, and despite its simplicity is often competitive with state-of-the-art algorithms. We also include SARD (Self-Attention with Reverse Distillation), a novel deep-learning algorithm that uses self-attention to allow medical events to contextualize themselves using other events in a patient's timeline. SARD also makes use of reverse distillation, a training technique we introduce that effectively initializes a deep model using a high-performing linear proxy, in this case the windowed linear model described above -- for the details of this method and the SARD architecture, please see our paper Kodialam et al. AAAI '21.

Documentation

For a more detailed summary of omop-learn's data collection pipeline, and for documentation of functions, please see the full documentation for this repo, which also describes the process of creating one's own cohorts, predictive tasks, and features.

Dependencies

The following libraries are necessary to run omop-learn:

  • numpy
  • sqlalchemy
  • pandas
  • torch
  • sklearn
  • matplotlib
  • ipywidgets
  • IPython.display
  • gensim.models
  • scipy.sparse
  • sparse

Note that sparse is the PyData Sparse library, documented here

Running omop-learn

We provide several example notebooks, which all use an example task of predicting mortality over a six-month window for patients over the age of 70.

  • End of Life Linear Model Example.ipynb and End of Life Deep Model Example.ipynb run the windowed linear and deep SARD models respectively -- note that your machine must be able to access a GPU in order to run the deep models.
  • End of Life Linear Model Example (With Nontemporal Features).ipynb demonstrates how to add nontemporal features.
  • End of Life Linear Model Ancestors Example.ipynb demonstrates how to add feature ancestors.
  • End of Life Linear Model Example More Prediction Times.ipynb uses a larger dataset with predictions from any date within a time range.

To run the models, first set up the file config.py with connection information for your Postgres server containing an OMOP CDM database. Then, simply run through the cells of the notebook in order. Further documentation of the exact steps taken to define a task, collect data, and run a predictive model are embedded within the notebooks.

Contributors and Acknowledgements

Omop-learn was written by Rohan Kodialam and Jake Marcus, with additional contributions by Rebecca Boiarsky, Ike Lage, and Shannon Hwang.

This package was developed as part of a collaboration with Independence Blue Cross and would not have been possible without the advice and support of Aaron Smith-McLallen, Ravi Chawla, Kyle Armstrong, Luogang Wei, and Jim Denyer.

Owner
Sontag Lab
Machine learning algorithms and applications to health care.
Sontag Lab
🔬 A curated list of awesome machine learning strategies & tools in financial market.

🔬 A curated list of awesome machine learning strategies & tools in financial market.

GeorgeZou 1.6k Dec 30, 2022
Firebase + Cloudrun + Machine learning

A simple end to end consumer lending decision engine powered by Google Cloud Platform (firebase hosting and cloudrun)

Emmanuel Ogunwede 8 Aug 16, 2022
Accelerating model creation and evaluation.

EmeraldML A machine learning library for streamlining the process of (1) cleaning and splitting data, (2) training, optimizing, and testing various mo

Yusuf 0 Dec 06, 2021
Python Automated Machine Learning library for tabular data.

Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Scie

Daniel Khromov 47 Dec 17, 2022
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022
Made in collaboration with Chris George for Art + ML Spring 2019.

Deepdream Eyes Made in collaboration with Chris George for Art + ML Spring 2019.

Francisco Cabrera 1 Jan 12, 2022
SPCL 48 Dec 12, 2022
Examples and code for the Practical Machine Learning workshop series

Practical Machine Learning Workshop Series Practical Machine Learning for Quantitative Finance Post conference workshop at the WBS Spring Conference D

CompatibL 21 Jun 25, 2022
CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

Rishabh Iyer 141 Nov 10, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
A demo project to elaborate how Machine Learn Models are deployed on production using Flask API

This is a salary prediction website developed with the help of machine learning, this makes prediction of salary on basis of few parameters like interview score, experience test score.

1 Feb 10, 2022
Tangram makes it easy for programmers to train, deploy, and monitor machine learning models.

Tangram Website | Discord Tangram makes it easy for programmers to train, deploy, and monitor machine learning models. Run tangram train to train a mo

Tangram 1.4k Jan 05, 2023
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
Simple and flexible ML workflow engine.

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable wit

Katana ML 295 Jan 06, 2023
nn-Meter is a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Microsoft 241 Dec 26, 2022
Provide an input CSV and a target field to predict, generate a model + code to run it.

automl-gs Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learn

Max Woolf 1.8k Jan 04, 2023
Data science, Data manipulation and Machine learning package.

duality Data science, Data manipulation and Machine learning package. Use permitted according to the terms of use and conditions set by the attached l

David Kundih 3 Oct 19, 2022
Stats, linear algebra and einops for xarray

xarray-einstats Stats, linear algebra and einops for xarray ⚠️ Caution: This project is still in a very early development stage Installation To instal

ArviZ 30 Dec 28, 2022
Microsoft Machine Learning for Apache Spark

Microsoft Machine Learning for Apache Spark MMLSpark is an ecosystem of tools aimed towards expanding the distributed computing framework Apache Spark

Microsoft Azure 3.9k Dec 30, 2022
Napari sklearn decomposition

napari-sklearn-decomposition A simple plugin to use with napari This napari plug

1 Sep 01, 2022